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PREFACE

This document represents the proceedings of the Graphics Technology in Space Applications, which

was held at NASA Lyndon B. Johnson Space Center on April 12 - 14, 1989 in Houston, Texas.

The papers incl u ded in these proceed i ngs were published in general as received from the authors

with minimum modification and editing. Information contained in the individual papers is not to

be construed as being officially endorsed by NASA.
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MESSAGE FROM THE GENERAL CHAIR

Purpose of Graphics Technology in Space Applications (GTSA)

This conference was created to facilitate the communication between industry and government in

graphics technology in space applications. It is intended to provide a forum for information

exchange by graphics researchers and practitioners for discussion of common problems, and for the

basic education of non-practitioners relative to the potential of this technology.

Robert H. Brown
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TAE PLUS: Transportable Applications Environment Plus

Tools for Building Graphic-oriented Applications

Martha R. Szczur
NASA/Goddard Space Flight Center

Greenbelt, Maryland 20771
[MSZCZUR/GSFCMAIL] TELEMAIL/USA

Marti@DSTL86.span.nasa.gov
(301) 286-8609 FTS 888-8609

INTRODUCTION

The Transportable Applications Environment
Plus (TAE PIusTM), developed by NASA's Goddard
Space Flight Center, is a portable User Interface
Management System (UIMS), which provides (1)
an intuitive WYSIWYG WorkBench for prototyp-
ing and designing an application's user interface,
integrated with (2) tools for efficiently implement-
ing the designed user interface and (3) effective
management of the user interface during an ap-
plication's active domain. During the develop-
ment of TAE Plus, many design and implementa-
tion decisions were based on the state-of-the-art
within graphics workstations, windowing system
and object-oriented programming languages, and
this paper shares some of the problems and issues
experienced during implementation. The paper
concludes with open issues and a description of
the next development steps planned for TAE Plus.

TAE PLUS AS A UIMS

Before presenting TAE Plus as a UIMS it is first
necessary to define what a UIMS is. The definition
by Betts et al [1] which is defined in terms of activi-
ties and purposes best describes the objectives of
TAE Plus:

"A User Interface Management System (UIMS) is
a tool (or tool set) designed to encourage interdis-
ciplinary cooperation in the rapid development,
tailoring and management (control) of the interac-
tion in an application domain across varying de-
vices, interaction techniques and user interface
styles. A UIMS tailors and manages (controls)
user interaction in an application domain to allow
for rapid and consistent development. A UIMS
can be viewed as a tool for increasing program-
mer productivity."

TAE Plus is a tool for designing, building and tai-
loring an application's user interface (UI) and for
controlling the designed UI throughout the appli-

cation's execution. The main component of TAE
Plus is a WYSIWYG user interface designers'
"WorkBench" that allows an application developer
to interactively construct the look and feel of an ap-
plication screen by arranging and manipulating
"interaction objects" (e.g., radio buttons, menus,
icons, stretchers, rotators, etc.).

Once the application's screen has been designed,
the WorkBench saves the user interface details in
a resource file. TAE Plus includes runtime ser-
vices, Window Programming Tools (WPTs),
which are used by application programs to display
and control the user interfaces designed with the
WorkBench. Since the WPTs access the resource
file during execution, the user interface details
remain independent from the application code, al-
lowing changes to be easily made to the look and
feel of an application without recompiling or re-
linking the software. To change the user inter-
face, the designer returns to the WorkBench, dy-
namically makes the modifications, and the
resource files are automatically updated. The
next time the application is run, the modifications
will be in effect. Figure 1 illustrates the TAE Plus
structure.

Graphic
Workstation

TAE
WorkBench

Operator's [ A_plicatlon

Graphic
Wo,'kstatlo n

Figure 1.TAE Plus Plus Structure



In addition to providing the WPT runtime subrou-
tines, TAE Plus also offers control of interaction
objects from the interpreted TAE Command Lan-
guage (TCL). This capability provides an extreme-
ly powerful means to quickly prototype an applica-
tion's use of TAE Plus interaction objects and add
programming logic without the requirement to
compile or link.

INTERACTION OBJECTS AS BUILDING
BI_.OC_

The basic building blocks for developing an appli-
cation's user interface are a set of interaction ob-
jects. All visually distinct elements of a display
that are created and managed using TAE Plus are
considered to be interaction objects. Within TAE
Plus, interaction objects fall into three categories:
user-entry objects, information objects and data-
driven objects. User-entry objects are mecha-
nisms by which an application can acquire infor-
mation and directives from the end use, and in-
clude radio buttons, text entry fields, scrolling text
lists, pulldown menus, and push buttons. Infor-
mation objects are used by an application to in-
struct or notify the user, such as contextual on-
line help information displayed in a scrollable
static text object or brief status/error messages
displayed in a bother box. Data-driven objects are
vector-drawn graphic objects which have been
"connected" to an application data variable, and
elements of their view change as the data values
change. Examples are dials, thermometers, and
strip charts, The real-time data-driven objects
are the most recent addition to the TAE Plus inter-
action object collection and currently, the types
supported include rotators, stretchers, discretes,
text and realtime graphs. Figure 2 illustrates the
current set of TAE Plus interaction objects (which
are referred to as items in the WorkBench). For
advanced screen designs, these items can be
grouped or composed into larger interaction ob-
jects, called panels by the WorkBench.
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Fig.re 2. Current set of TAE Plus interaction objects

The use of interaction objects offers the application
designer/programmer a number of benefits with
the expected payoff of an increase in programmer
productivity. [2]

• The interaction objects work together both visu-
ally and behaviorally to provide a consistent look
and feel for the application's user interface. This
consistency translates into reduced end-user
training time, more attractive (from a graphic de-
sign point of view) screens, and an application
which is easier to use.

• Interaction objects provide a common frame-
work for diverse sets of application programs, and
serve as a base set of well-documented standards
for user interfaces in systems composed of many
separate application programs.

• The set of user entry interaction objects covers
most common data entry and manipulation
needs, allowing the application programmer to
spend more time on the content of the application
program. The data driven interaction objects pro-
vide a standard means of displaying realtime data
graphically. The object architecture also enables
quick development and addition of new interaction
objects into the TAE Plus object library.

• The interaction objects have been thoroughly
tested and debugged, allowing the programmer to
spend more time testing the application, and less
time verifying that the user interface behaves cor-
rectly. This is particularly important considering
the complexity of some of the objects, and the pro-
gramming effort it would take to code them
scratch.

WORKBENCH SCENARIO

The WorkBench provides an intuitive environ-
ment for defining, testing, and communicating
the look and feel of an application system. As a de-
signer tool, it provides the following key features:

• Customization and direct manipulation of
user interaction objects

• Application code generator
• Capability to dynamically define

"connections" between interaction objects
• Rehearsal capability to "try out" sequencing

of the user interface design
• Icon editor and support for raster objects
• Undo capability
• Help icon/button on-line support
• Capability to dynamically draw and define

data-driven graphic objects

Let's walk through a simple design scenario to get
a feel for how the WorkBench operates. The appli-
cation is a hardware monitoring task for a satel-
lite data handling facility and the designer is go-
ing to layout the user interaction in which the

ORIGINAL PAGE IS
OF POOR QUALITY



Figure 3. Hand-drawn sketch of application's
user interface to be created with WorkBench
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Figure 4. WorkBench's Main Menu
and Panel Specification Panel
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Figure 5. Defining the interaction
objects to reside in a panel.

operator is prompted for a hardware channel
number. Once the operator selects a channel, a
new panel appears with a realtime sliding bar ob-
ject displaying the amount of data flowing
through the channel. Figure 3 shows a rough
sketch of the two panels which are to be designed
with the WorkBench in this scenario.

Functionally, the WorkBench allows an applica-
tion designer to dynamically lay out an application
screen, defining its static and dynamic areas.
The tool provides the designer with a choice of pre-
designed interaction objects and allows for tailor-
ing, combining and rearranging of the objects. To
begin the session, the designer needs to create the
base window into which interaction objects will be
specified. He/she selects New Panel from the
main WorkBench menu, which displays the panel
specification panel (Refer to Figure 4) where the
designer specifies presentation information, such
as the title, scroll option, font, color, and optional

on-line help for the panel Monitor.

The designer is now ready to define the interaction
items to reside in the panel. He/she selects New
Item from the WorkBench main menu and is pre-
sented with the item specification window. The de-
signer defines both the presentation information
and the context information. The item specifica-
tion window has an associated Constraints (i.e.,
context) window within which the labels for each
entry of a radio button bank object are specified
(refer to Figure 5). For the scenario we are follow-
ing here, the designer has created a radio button
bank for the channel numbers, a cancel and okay
button and a panel help icon. For icon support,
the WorkBench has an Icon Editor, within which
an icon can be drawn, edited and saved.

The designer also has the option of retrieving a
"palette" of items (by selecting File...oInclude from
the WorkBench menu). From this collection of
previously created items, the designer can select
and copy appropriate objects. The ability to reuse
items saves programming time, facilitates trying
out different combinations of items in the prototyp-
ing process, and contributes to standardization of
the application's "look and feel". If an application
system manager wanted to ensure consistency
and uniformity across an entire application's UI,
all developers could be informed to use only items
from the application's palette of common items.

The designer goes through the same process to
build the realtime display panel, DataFlow. This
simple panel is made up of a data-driven stretcher
item, selected from a pre-defined pallete of"output
objects", and a quit button. The WorkBench pro-
vides a drawing tool [5] within which the static
background and dynamic foreground of a data-
driven object can be drawn, edited and saved.
Once the object is created, the designer identifies
presentation attributes for the object (i.e. the color



thresholds,maximum/minimum,delta).

Mostoftenanapplication'sUI will bemadeupof
anumberofrelatedpanels,sequencedin a mean-
ingful fashion.ThroughtheWorkBench,thede-
signerdefinestheinterface"connections".These
linksdeterminewhathappenswhentheuserse-
lectsabuttonoramenuentry.Thedesigneratta-
ches"events"tointeractionitemsandtherebydes-
ignateswhatpanelappearsandwhatprogram
executeswhenaneventis triggered.Eventsare
triggeredbyuser-controlledI/Operipherals(e.g.,
pointandclickdevicesorkeyboardinput). In Fig-
ure6,thedesignerhasspecifiedlinkscausingthe
Dataflow panel to appear when the end user se-
lects the option marked Channel 1 and the process
Flowcompute to be executed. In turn, Flowcom-
pute is the application process containing the
data variable that drives the variations in appear-
ance of the item BarSlide.

TAE Plus also offers an optional help feature
which provides a consistent mechanism for sup-
plying application specific information about a
panel and any interaction items within the panel.
In a typical session, the designer elects to edit a
help file after all the panel items have been de-
signed. Clicking on the edit help option brings up
a text editor window in which the appropriate in-
formation can be entered. The designer can then
define any button item or icon item to be " the"
help item for the panel (in the scenario we are fol-
lowing, it would be the Help icon in the panel
Monitor). During the application operation, when
the end-user clicks on the question mark item,
the cursor changes to a "?". The end-user then
clicks on the panel itself or any item in the panel
to bring up a help panel containing the associated
help text.

designer must then be able to preview (i.e., to re-
hearse) the interface's operation. With this poten-
tial to "test drive" an interface, to make changes,
and to dry-run again, iterative design becomes
part of the prototyping process. When the design-
er selects the rehearse option (by selecting Utili-
ty....Rehearse from the WorkBench Menu), the
screen is cleared and the WorkBench goes
through the entire sequence as if the application
were executing. With the rehearsal feature, the
designer can evaluate and refine both the func-
tionality and the aesthetics of a proposed interface.
After the rehearsal, control is returned to
wherever the designer left off in the WorkBench
and he/she can either continue with the design
process or save the defined UI in a resource file
(by selecting File....Save from the WorkBench
Menu).

Developing software with sophisticated user inter-
faces is a complex process, mandating the support
of varied talents, including human factors experts
and application program specialists. Once the UI
designer (who may have limited experience with
actual code development) has finished the UI, he/
she can turn the saved UI resource file over to an
experienced programmer. As a further aid to the
application programmer, the WorkBench's
"generate" feature (Utillty....Generate) produces a
fully annotated and operational body of code
which will display and manage the entire Work-
Bench designed UI. Currently, source code gen-
eration of C, Ada and TCL are supported, with
bindings for Fortran and C++ expected in later
TAE Plus releases. The programmer can now add
additional code to this template and make a fully
functional application. Providing these code
"stubs" helps in establishing uniform program-
ming method and style across large applications
or a family of interrelated software applications.

Figure 6.
Using the WorkBench to define "connections".

Having designed the layout of panels and their at-
tendant items and having threaded the panel and
items according to their interaction scenario, the

WINDOW PROGRAMMING TOOLS (WPTs)

The Window Programming Tools (WPTs) are a
package of application program callable subrou-
tines used to control an application's user inter-
face. Using these routines, applications can de-
fine, display, receive information from, update
and/or delete TAE Plus panels and interaction ob-
jects (refer to Figure 7 for a current list of WPT).
WPTs support a modeless user interface, mean-
ing a user can interact with one of a number of in-
teraction objects within any one of a number of
displayed panels. In contrast to sequential mode-
oriented programming, modeless programming
accepts, at any instance, a number of user inputs,
orevents. Because these multiple events must be
handled by the application program, event-driven
programming can be more complex than tradi-
tional programming. TheWorkBench's auto-
generation of the WFT event loop reduces the risk
of programmer error within the UI portion of an
applications' implementation.

4
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Figure 7. The Window Programming Tools (WPTs)

The WPTs utilize the X Window System TM [10] as
its base windowing system. One of the strengths of
X is the concept of providing a low-level abstrac-
tion of windowing support (){lib), which becomes
the base standard, and a high-level abstraction (X
toolkits), which has a set of interaction objects
(called "widgets" in the X world) that define ele-
ments of a urs look and feel. The current version
of TAE Plus (V3.2) is implemented with the latest
release of X (Xll.3) using the Xray toolkit, which
was distributed with earlier versions of X. We are
rewriting our WPTs to utilize the X Toolkit, which
is becoming a de facto toolkit standard. The initial
approach is to base our default set of interaction
objects on the HP widget set delivered with the ge-
neric M.I.T. delivery of X (and which is in the
public domain) while supporting an open archi-
tecture that allows adding to the widget set. A
"cookbook" explaining the steps to be taken to re-
place/add widgets and update the WorkBench is in
progress. This will enable TAE Plus to be used for
designing and managing the user interface that
adheres to whatever UI style is defined by an ap-
plication group to be their preferred widget set.

The WPTs also provide a buffer between the appli-
cation program and the X Window System servic-
es. For instance, to display a WorkBench-
designed panel, an application makes a single call
to Wpt_NextPanel. This single call translates into
a function that consists of about 2800 lines of C
code and makes about 50 calls to X Window Sys-
tem routines. For the majority of applications, the
WPT services and objects supported by the Work-
Bench provide the necessary user interface tools
and save the programmer from having to learn
the complexities of programming directly with X.
This can be a significant advantage, especially
when considering that the full set of 17 Wpt rou-
tines consist of 5800 lines of C code and make a to-
tal of between 300-400 X calls.

PROTOTYPING IN TAE COMMAND
LANGUAGE (TCL)

To provide an easy method for displaying and ma-
nipulating the newly designed user interface, we
created a simple set of commands CWPT" com-
mands) within the TAE Command Language
(TCL).

TCL offers a high-level set of commands used to
invoke and manage application functions. Com-
mands can be invoked dynamically during an in-
teractive session or used to build command proce-

dures.An advantage TAE Plus has over some
other UIMS is that it does not just support the
user interface component of an application, but
has a full set of integrated tools to fully support an
application, either a prototype or an operational
version. These services include parameter manip-
ulation, message logging, logon/logoff procedure,
data file I/O, operating system services, scripting
capability, session logging, procedure building
capability, on-line help, and user-site tailoring of
TAE Plus commands. Because user interface tools
are integrated _vith general purpose application
management services, the application need not be
tightly tied to a particular operating system or
computer.

Since TCL is an interpreted language, the com-
mands can be used to prototype an application
without having to recompile or relink every time a
change is made. Just as with WPT routines used
by application programs, the WPT commands can
be used to directly define panels and items, or they
can be used to access WorkBench-generated re-
source files that contain pre-defined panels and
items. While the intended use of these commands
is for prototyping, if the overhead performance of
executing TCL commands is acceptable, then
command procedures using WPT commands
would be appropriate for operational systems.

TALE PLUS ARcHrrE_

The TAE Plus architecture is based on a total sep-
aration of the user interaction management from
the application-specific software. The current im-
plementation is a result of having gone through
several prototyped versions of a WorkBench and
graphic support development during the 1986-87
period, as well as building on an exisiting appli-
cation management system, the original TAE (af-
fectionately referred to as "TAE Classic"). [9] TAE
Classic architecture, which was designed in 1980,
was based on a total separation of the user interac-
tion in a much stricter sense than the TAE Plus
implementation. All user dialogue was directed
through a terminal monitor, including dialogues
initiated from within an application. This central
control of the UI easily facilitated the goal of pro-
viding a consistent look and feel across an applica-

_._ ' i _,- t_ _ _: __ ....



tion,butwaslimitedto anASCIIterminal.

Theadventof the graphic workstation inspires
more elaborate user interfaces and a closer inter-

relationship between the application program and
the UI. The TAE architecture was enhanced to al-
low for an application to directly control the user
interactions,while stillmaintaining presentation
independence (i.e.,an applicationdoesn'tneed to
know any ofthe detailsas tohow a requestfordata
isactuallybeing presented tothe user,only what
the data is).Figure 8 illustrateshow the TAE Plus
structure maintains UI/applicationindependence
while providing run-time servicesto controland

manipulate the user interactionsfrom within an
application.

\ /
Devetoper'l

O_rator'*

Figure 8.
TAE Plus architecture maintains separation

of UI and application elements

SELECTION OF AN IMPLEMENTATION
LANGUAGE

TAE Classic is implemented in the C program-
ming language, which has proven to be an effi-
cient and standard language across different
hardware platforms, thus allowing for the porting
of TAE source code with reasonable ease. Howev-
er, we felt a "true" object-oriented language
would provide us with the optimum environment
for implementing the TAE Plus graphical user in-
terface capabilities. (See Chapter 9 of Cox [3] for a
discussion on the suitability of object-oriented lan-
guages for graphical user interfaces.)

In early 1987, before committing to an object-
oriented language and as a means of demonstrat-
ing the utility of the X Window System in our
UIMS concept, we built a rapid prototype of TAE
Plus, using Smalltalk TM to implement the Work-
Bench. This proved to be a beneficial learning ex-
perience. The prototype demonstrated that object-
oriented programming is a productive and effec-
tive method for building user interfaces. Al-
though Smalltalk enabled us to generate a proto-
type in a timely manner, several concerns did
surface during the implementation. For instance,

at the time of the protetyping effort, Smalltalk was
not based on the X Window System, which meant
the WorkBench and the WPTs had different imple-
mentations of the interaction object functions.
Another concern with the Smalltalk implementa-
tion was that the designer had to have some un-
derstanding of Smalltalk's interface conventions --
not a desirable feature since the user interface for
applications operating in the TAE Plus environ-
ment would have a different set of conventions im-
posed by an X-based Window Manager. The issue
of distribution of TAE Plus with a Smalltalk appli-
cation was also a problem. With TAE, distribution
only involves acquiring a license from COSMIC TM

(NASA's distribution center), but for a site to run
the WorkBench, they would also need a Smalltalk
license. The limited use of Smalltalk in our user
community made this undesirable. For these and
other reasons [15] we looked at other languages
for the operational implementation of the Work-
Bench.

Though the X Window System is written in C, we
did not want to constrain ourselves to a procedure-
based language, especially in light of the power of
C++ and Objective C, and the fact that interfaces
from these object-based languages exist to the X
runtime library. For the past several years, we
have closely followed the C++ versus Objective C
debate. The Objective C argument is strong -- the
language is a marriage of two powerful languages
(Smalltalk and C), and provides much of the
Smalltalk elegance without severe performance
penalties. We selected C++, however, for several
reasons [15]. For one, C++ seems to be a
"cleaner" language (i.e., it is a conceptually
strong expansion of C) and is becoming increas-
ing popular within the object -oriented program-
ming community. Another strong argument for
using C++ is the growing availability of existing
public domain X-based object class libraries. Uti-
lizing an existing object library is not only a cost
saver, but also serves as a learning tool, both for
object-oriented programming and for C++. Deliv-
ered with the X Window System is the InterViews
C++ class library and a drawing utility, idraw,
both of which were developed at Stanford Universi-
ty. [4,5] The InterViews C++ class library has
many attractive features. The class structure has
gone through several major iterations and the
current design is clean. The idraw utility is a so-
phisticated direct manipulation C++ application,
which allows the WorkBench to create, edit and
save the graphical data-driven interaction objects.

Many of the current implementations of C++ com-
pilers are pre-processors generating standard C
code, thus enabling the operational TAE Plus code
to be delivered in C code and allowing for ease in
porting. With this option and by utilizing sophisti-
cated public domain software packages (X Win-
dow System, InterViews, and idraw) we avoid re-

quiring our user community to purchase any
additional software licenses or compilers.

ORIGINAL PAGE IS
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Because of NASA's commitment to use Ada TM for
all Space Station software development, the ques-
tion arises "why not Ada"? We do not consider
Ada a purely object-oriented language. [3,11,12,17]
As mentioned earlier, we felt that the TAE Plus
development would be better served by a "pure" ob°
ject-oriented language -- one that supports data
encapsulation, inheritance and polymorphism.
These are the features associated with the type of
object-oriented programming supported by Small-
talk and C++. Since TAE Plus software services
can be accessed by Ada applications, we feel that
implementing the TAE Plus environment in a
pure object-oriented language is the most effective
approach at this particular time.

PORTABILITY and MAINTAINABILITY

TAE is designed to be portable. At present, TAE
Classic is successfully operating on 14 Unix-based
computers, VAX/VMS and the IBM/VM environ-
ment. TAE Plus base development is being done
on a Sun workstation under Unix. As of February
1989, it is also operational under Unix on the Apol-
lo, VaxStation II (Ultrix), HP9000, Masscomp and
the Macintosh II (A/UX). Ports are in progress
for the IBM RT and IBM PS/2 under AIX and the
VAX under VMS. TAE Classic has over 230 in-
stallations, of which 64 are NASA. The current
beta version of TAE Plus is located at over 100
world-wide beta sites, including at least 30 NASA
installations.

Every system is maintainable; how easy it is to
maintain is the issue. When a UIMS is used as a
tool to build and support an application's user in-
terface, there is a legitimate concern about the ap-
plication's dependency on a "black box". (Since an
application program's UI control is isolated in the
UIMS, it is frequently perceived by application
programmers as a "black box".[6]) The UIMS ar-
chitecture assure developers that corrections and
upgrades to itself will have a minimal impact
within the application domain. We knew when we
began that TAE Plus was targeted for wide appli-
cation utilization and for different machines, so
ease of maintenance has always been important.
By providing the application callable WPTs and
WPT function commands, applications are isolat-
ed from the windowing system, and thus, if in a
few years a newer, faster, fancier windowing
standard shows up, only the WPTs require updat-
ing or rewriting; the application code is not affect-
ed. In effect, this is what we're doing with the re-
write of the WPTs to use the Xll Xtoolkit

intrinsics. All applications, as well as the Work-
Bench, will get enhanced capability and perfor-
mance without making any changes to them-
selves.

User support is another facet of maintainability.
Since the first release of TAE Classic in 1981,

we have provided user support through a fully
staffed Support Office. This service has been one
of the primary reasons for the success of TAE.
Through the Support Office, users receive an-
swers to technical questions, report problems, and
make suggestions for improvements. In turn, the
Support Office keeps users up-to-date on new re-
leases, provides training sessions, and sponsors
user workshops and conferences. This exchange
of information enables the Project Office to keep
the TAE software and documentation "in working
order" and, perhaps most importantly, take ad-
vantage of user feedback to help direct our future
development.

NEXT STEPS

The current TAE Plus provides a powerful and
much needed tool for the continuum of software
engineering -- from the initial design phases of a
highly interactive prototype to the fully operational
application package. However, there is still a long
list of enhancements and new capabilities that we
will be adding to TAE Plus in future releases.
Features included on the "Wanted List" are exten-
sions to the interaction objects, particularly in the
data-driven object category; integration with the
Open Software Foundation's (OSF) User Environ-
ment Component (UEC); direct manipulation sup-
port for application programs; ports to new work-
station platforms; on-line tutorial and training
tools; introduction of hypermedia technology; inte-
gration of expert system technology to aid in mak-
ing user interface design decision; and imple-
mentation of additional user interface designer

tools, such as a WYSIWYG graph builder.

CONCLUSION

Building large scale interactive systems has been
a regular activity at NASA/Goddard Space Flight
Center (GSFC) since the transition from card
readers to interactive terminals. Although the ap-
plications vary from on-board flight instrument
command and control to scientific data analysis,
they have all required software to support the com-
munication between the human user and the ap-
plication tasks. In the early 1980's, GSFC sought
to capitalize on common requirements in human-
computer interaction by building TAE Plus Clas-
sic, a powerful tool for quickly and easily building
consistent, portable user interfaces in an interac-
tive alphanumeric terminal environment. With
the emergence of sophisticated graphic worksta-
tions and the subsequent demands for highly in-
teractive systems, the user interface becomes
more complex and includes multiple window dis-
plays, the use of color, graphical objects and icons,
and various selection techniques. Traditional UI
paradigms give us only improvished models and



guidelines;theyare inadequate for what can be
accomplished with the new technology. Prototyp-
ing of different user interface designs, thus, be-
comes an increasingly important method for sta-
bilizing concepts and requirements for an
application. At GSFC, we had the requirement to
pro;tide a tool for prototyping a visual representa-
tion of a user interface, as well as establish an in-
tegrated development environment that allows
prototyped user interfaces to evolve into operation-
al applications. We feel TAE Plus is fulfilling this
role by providing a usable, generalized, portable
and maintainable package of development tools.
TAE Plus is an evolving system and its develop-
ment will continue to be guided by user-defined re-
quirements. To date, each phase of TAE Plus's ev-
olution has taken into account advances in virtual
operating systems, human factors research, com-
mand language design, standardization efforts
and software portability. With TAE Plus's flexibil-
ity and functionality, we believe it can contribute to
both more advances and more standardization in

user interface management system technology.
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ABSTRACT

The two worlds of interactive graphics and realistic graphics

have remained separate. Fast graphics hardware runs simple

algorithms and generates simple-loola'ng images. Photoreal-

istic image synthesis software runs slowly on large expensive

computers. The time has come for these two branches of com-

puter graphics to merge.

The speed and expense of graphics hardware is no longer the

barrier to the wide acceptance of photorealism. There is

every reason to believe that high quality image synthesis will

become a standard capability of every graphics machine, from

superworkstation to personal computer. The significant bar-

rier has been the lack of a common language, an agreed-upon

set of terms and conditions, for 3-1) modeling systems to talk

to 3-D rendering systems for computing an accurate rendition

of that scene.

Pixar has introduced RenderMan to serve as that common

language. This paper examines RonderMan, specifically the

extensibility it offers in shading calculations.

NASA has been at the forefront of developments in computer graphics.

One area in particular has been the quest for realism in synthetic image

generation. Voyager animations done at JPL a decade ago captivated

many with the notion that the process of scientific discovery and the popu-

lar understanding of that process could both benefit from visually accurate

computer generated imagery.

Computers have sped up since those animations were made. Tools for

modeling and controlling the animation have also improved. Yet too often,

the ability to produce complex and accurate renditions is relegated to spe-

cialized labs. The challenge that we face is in bringing this technology to

the desktop, running it on every graphics platform, linked across the stan-

dard networks, fed from the common databases.

The goal is to unify the often divergent methodologies used in the

computer-aided-design of a 3-D object, the analysis of that object during

simulation, and the accurate representation of the object.

What is RenderMan?

RenderMan is an interface between 3-D modeling systems and photoreal-

istic rendering systems. Modeling is the process of describing objects to a

computer. We use modeling here to refer to all aspects of describing a

scene, including its dynamics. Rendering is the process of generating an

image of the scene from a given viewpoint. RenderMan is an interface

proposal which will permit a large variety of geometric modelers to talk to

a large variety of renderers with a straightforward, common format.

The central problem in making such a proposal is to accommodate the

needs of advanced rendering in a clean way, while allowing standard CAD

databases to feed the interface. Only then can photorealistic image syn-

thesis be brought under the same wing, integrated into the same computing

environment as other aspects of CAD and simulation.

Shape and Shading

An overriding principle in the design of RenderMan used to solve this

problem is a recognition that an interface proposal must distinguish clearly

between shape and shading, between the geometry of the scene and the

visual characteristics of the geometry. The visual complexity of real world

imagery is not found in the general shape of objects, but rather in the tex-

tures and materials and lighting and dynamics. In fact, the graphics com-

munity already has sufficient CAD tools to specify the shapes of things.
We lack the tools to describe visual qualities, such as atmospheric condi-

tions, reflectivity of materials, and characteristics of light sources.

A second principle is that shading computations need to be far more gen-
eral than the Gouraud and Phong interpolation set forth in the textbooks.

The world is not all plastic. We need rendering systems that can wrap an

atmospheric texture around a spherical planet, that can compute a noise

function to simulate the bumpiness of a surface, that can handle surface

properties other than color, perhaps to compute renditions outside the visi-

ble spectrum.

The RenderMan interface is a specification for approximately 100 sub-

routines with which a modeler can completely describe all of the informa-

tion that a renderer might need to generate an image of a scene. It pro-

vides entry points for geometric information, transformation hierarchies,

color and material property information, camera parameters and output

image characteristics.

The RenderMan interface supports a rich variety of geometric primitives.

For example, convex polygons, concave polygons (with and without

holes), polyhedral models, and a large number of quadric surfaces are sup-

ported. RenderMan includes a very comprehensive bicubic patch primi-

five, specified with an arbitrary basis matrix. RenderMan also supports

non-uniform rational B-spline surfaces (NURBS).
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Supportforprimitivessuch as these guarantees that most standard CAD

packages can feed the RonderMan interface quite easily. There are two

significant capabilities of the interface in extending the common notions

about geometry:

First, RenderMan supports procedural primitives. One of the biggest

problems in modeling natural phenomena (such as mountains, plants, r_re,

etc.) is that the geometric complexity is enormous. This problem is usually

solved by writing programs which generate all of the tiny detail, rather

than model it by hand. However, it can still be very expensive for the

modeler to generate a huge complex model and then pass it to the renderer,

particularly if the modeler doesn't know how much of it the renderer really

needs. RenderMan's procedural primitives permit the user to give the

renderer a pointer to a subroutine which will expand simple objects into

more complicated ones, such as converting a triangle into a fractal moun-

tain or a sphere into a particle system explosion. Using procedural primi-

fives, the modeler can download a very complex model such as a fractal

into the renderer in a carefully controlled way, so that only the required

amount of detail is sent through the interface.

Secondly, RenderMan has a very general interface for specification of the

arbitrary parameters on a surface. This permits the user to specify not sim-

ply the position and color, but also the surface normals and texture map

coordinates on a per vertex basis. In addition, the vertex structure can

actually be extended by the user at run-time, to include arbitrary informa-

tion of his choosing such as temperature or stress or density or any other

values that might be interesting to his particular application. These param-

eters can then be used to control the shading calculation.

Shading Language

Most software renderers have a subroutine which determines the color of

the surface of an object. Typically, it will implement a single mathemati-

cal equation which uses a simple model of the reflection of light in order to

calculate the contributions of the light sources and texture maps upon the

surface color. The equation often has a lot of parameters (5 to 20, depend-

ing on the renderer) which the user tweaks to control the appearance of

different kinds of materials (plastic, metal, chalk, etc.).

Very often, however, you want the surface to have some characteristic

which you can't achieve with the fixed equation, such as the use of a tex-

ture map to modify some shading parameter. If you are fortunate enough

to have the source code, you can add your function and recompile. If not,
you are out of luck.

RenderMan changes this model, by providing the facility of the shading

language, a C-like programming language which has new functions and

data types that are specifically designed for the purpose of calculating
colors based on geometric information. Programs which users write in the

shading language are typically small (10 to 20 lines), and are loaded into

the renderer at run-time when they are requested by some part of the scene

geometry. These programs then replace the built-in shading equations.

Users can use this language to customize the shading on a per-object basis.

This new freedom gives the user the power to model the appearance of

objects as carefully as he models their shape.

The shading language supports three basic data types, the float, the

point and the color, point and color are abstractdata types

which are actually vectors of floating point values. The standard C arith-

metic operators (*, +, /, etc.) work on these data types. In addition,

there are some new operators for vector dot and cross product. The fami-

liar C conditional and looping constructs are available (except switch),

as are subroutine definitions and calls. There is a rich library of mathemat-

ical functions, as well as a library of functions which implement common

shading operations such as normalizing vectors, transforming points

between coordinate systems, calculating diffuse and specular lighting,

interpolating colors, splining and calculating pseudorandom numbers.

RenderMan actually permits the user to define up to four separate shading

language programs which provide different material characteristic infor-

mafion about each object: a surface shader, which determines what color

we see when light reflects off the surface; a displacement shader, which

can move the surface small amounts to add dents or fillets which are too

small or too complex to model geometrically; a light shader, which

describes how luminous objects emit light; and a volume shader, which

describes how light is attenuated as it passes through the interior of a

translucent objeeL This may seem a bit complicated, but it actually quite a

straightforward way to think about the material properties of objects, par-

ticularly once you've seen them in action.

Shaders

The renderer calls the appropriate shading language program (shader)

every time a light intensity, surface color, etc., is required. When a shader

is called, it has available to it a large number of global variables which are

provided by the renderer. These variables include all of the geometric

information that the renderer knows about the surface being shaded, such

as the position P, the surface normal N, the color Cs and opacity os

that the user specified, the texture coordinates s, t and others. The vari-

ables that the user applied to the vertices of his primitives are also avail-

able inside the shadea's. Each type of shader accomplishes its specified

task by calculating and modifying a specific part of this global state. For

example, a surface shader is responsible for calculating and setting Ci,

the color that the eye sees. A light shader is responsible for setting C1,

the light color.

Listing 1 shows an example of a simple surface shader. This shader calcu-

lates the reflectivity of a metallic object, using a simple equation. It makes

use of the standard library functions ambient, diffuse and specu-

lar to determine the amount of light arriving on the surface from the light

sources. These functions implement three customary equations based on

the direction and strength of the incoming light. If those functions had not

been appropriate, the surface shader has access to the lights and could have
calculated whatever values it pleased from them. The shader then calcu-

lates a weighted average of the incoming light intensities and multiplies by

the color of the object. Notice also that the shading language took care of

the multiplication of float values by color vectors automatically, freeing

the user from having to write the ugly loops which would have been

present in most other languages.

The type of the shader (in this case surface) indicates its intended

function. Parameters to the shader are specified using a syntax similar to

ANSI C. This shader demonstrates another other unique feature of the

shading language, rite presence of default values in the parameter list.

When a modeler requests this shader, it specifies the parameters it wishes

to override by name. Any parameter not mentioned is left with the default
value.

surface metallic (float Ka = .4,

Kd = .4, Ks = .6,

roughness = .25;)

{

N = faceforward (normalize (N)) ;

Ci = Cs * (Ka * ambient() +

Kd * diffuse(N) +

Ks * specular(N,

-normalize(I), roughness) ) ;

}

Listing 1. A simple shader which simulates the

reflection of light off of metallic objects.
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Listing 2 demonstrates a displacement shader. The purpose of a displace-

ment shader is to move the position of the surface around a little bit to

simulate tiny fillets, dents and other minor surface perturbations. This

gready adds to the visual interest of an object, and makes it look much

more realistic. This particular shader calculates a fractal dentedness using

several iterations of noise, a function which produces a semirandom value

which changes slowly over the surface of the object (using a purely ran-

dom value would distort the surface beyond recognition, since adjacent

points would have no relationship to each other). Getting the same effect

by trying to model the intricate surface dents would be extremely difficult.

displacement dent (float scale = 1.0;)

l

float size = 1.0, displace = 0.0;

for (i=0; i<6; i+=l.0) {

/* Calculate a simple

fractal I/f noise function */

displace += abs(.5 - noise(P * size))

/ size;

size *= 2.0;

l

/* Displace the surface and

recalculate surface normals */

P += N * pow(displace, 3.0) * scale;

N = calculatenormals(P);

}

Listing 2. Shader which simulates dents

by moving the surface a small amount.

This adds visual complexity which is very

difficult to model convincingly using

standard geometric modeling techniques.

Sensor Simulations

RenderMan can generate output much more general that the simple

pinhole camera/RGB images provided by current systems. RenderMan

can, for example, compute color in multichannel spectral spaces. Landsat

data can be used as input texture maps to control muluple surface parame-

ters mapped onto a planet surface. Shading language procedures can be

written to use surface parameters such as temperature; in this way, mul-

tichannel sensor image acquisition can be simulated.

RenderMan allows the user to specify other parameters of the simulated

camera, in order to provide information to renderers which support

advanced rendering features. For example, the user can set the shutter

time as well as the focal length, focal distance and f-stop of the camera, to

simulate motion blur and depth-of-field. RondorMan allows the user to

specify the positions, shapes and colors of the objects at multiple times

during the shutter interval, so that sophisticated renderers that can simulate

motion blur will know how the objects are moving.

High quality rendering requires a lot of attention to the sampling and filter-

ing which is performed on the output pixels, in order to avoid aliasing.

RenderMan gives the user independent control over the number of shad-

ing samples per pixel and the number of hidden surface samples per pixel,

as well as the size and shape of the pixel filter function. In addition to the

standard display parameters of output image name and device type and

image resolution, RendorMan supports gamma correction and exposure

control. These functions compensate for a monitor's phosphors' tendency

to glow with exponentially increasing brightness as voltage increases

linearly. It also contains the new concept of an imager shader, another

shading language program which permits the user to implement various

color manipulations on final pixels just before they are put into the frame-
buffer or file.

Conclusion

The RenderMan interface is a powerful interface between 3-D modeling

systems and photorealistic rendering systems. It is designed to bring the

highest quality in image synthesis into widespread use. Modem CAD

modeling tools can feed RenderMan from their standard database of

geometry. RenderMan provides simple built-in shading language pro-

cedures to provide for a range of standard material properties.

RenderMan provides a shading language for far-reaching extensibility in

user specification of specific visual characteristics of the scene. The inter-

face exposes a great deal of control over the shading process; modelers are

encouraged to offer user-defined shading language procedures for render-

ers to execute. By partitioning the modeler/renderer interface in this way,

high-quality rendering can be made accessible to a vast array of modeling

systems and CAD databases.

RenderMan is the only graphics interface proposal to deal with issues in

high-quality synthetic image generation such as antialiasing, texture map-

ping, motion-blur, shadows, spectral color models and programmable

shading languages. These advanced features are not available on most of

the rendering software and hardware that is currently available. As such,

RenderMan represents a goal for sophisticated new graphics hardware

and rendering software to shoot for.

Users of graphics workstations and personal computers will be the biggest

winners, as photorealism becomes inexpensive, commonplace and compa-

tible across a wide range of platforms.

Copies of The RenderMan Interface, Version 3.0 are available from
Pixar, 3240 Kerner Blvd., San Rafael, CA, 94901. Please enclose $15 to

defer the cost of printing and mailing.
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ABSTRACT

NASA's Mission Control Center, located at Johnson Space Center, is

incrementally moving from a centralized architecture to a

distributed architecture. Starting with STS-29, some host-driven

console screens will be replaced with graphics terminals driven by

workstations. These workstations will be supplied realtime data

first by the Real Time Data System (RTDS), a system developed in-

house, and then months later (in parallel with RTDS) by interim and

subsequently operational versions of the Mission Control Center

Upgrade (MCCU) software package. The Real Time Interactive Display

Environment (RTIDE) was built by Space Shuttle flight controllers to

support the rapid development of multiple new displays to support

Shuttle flights. RTIDE is a display building tool that allows non-

programmers to define object-oriented, event-driven, mouseable

displays. Particular emphasis was placed on upward compatibility

between RTIDE versions, ability to acquire data from different data

sources, realtime performance, ability to modularly upgrade RTIDE,

machine portability, and a clean, powerful user interface. The paper

discusses the operational and organizational factors that drove

RTIDE to its present form, the actual design itself, simulation and

flight performance, and lessons learned in the process.

Key words: Space Shuttle, Mission Control Center, display

building tool, RTDS.

INTRODUCTION

The U.S. Space Shuttle is monitored and controlled from the Mission

Control Center (MCC) at NASAs Johnson Space Center (JSC) in Houston,

Texas. The flight controllers involved in realtime interaction with

the Shuttle work for the Systems Division of the Mission Operations

Directorate (MOD).

In the MCC, the Shuttle telemetry is fed into a large minicomputer

(the Telemetry Preprocessor Computer, or TPC). This machine

decommutates the stream and passes it to a mainframe, the Mission

Operations Computer (MOC). The MOC does simple limit checking and

drives all the displays used by the flight controllers.
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Workstations are used in the MCC to process offline programs. Flight

controllers and support personnel have written many general and

discipline-specific applications for these machines.

INCO Expert System Project

John Muratore, a NASA flight controller, began the INCO Expert

System Project (IESP) in 1986 (INCO is the callsign for the

Instrumentation and Communication Officer front room flight control

position). This project's goal was to develop and test realtime

rule-based expert system applications in an operational environment,

i.e., during a Shuttle mission.

Because of safety considerations, the project could not use the MOC

or TPC. To get realtime shuttle telemetry into a workstation, a

Loral ADS-100 off-the-shelf telemetry processor was used. It

decommutated the data stream and passed the data to the workstation,

where it was moved to an applications interface with custom-built

software. This entire system was called the Real Time Data System

(RTDS), and it delivered realtime data to MCC workstations years

earlier than previously planned.

RTDS and a set of hand-built application programs were used

successfully on STS-26. These applications were certified for use in

making critical flight calls during ascent.

Im___act of Earl Z Delivery of Realtime Data to Workstations.

To begin exploring the possibilities of improved displays, it was

decided to remove a few MOC-driven CRTS from consoles and replace

them with RTDS-driven graphics terminals.

The author, as a flight controller whose primary CRT was to be

replaced, and as an IESP applications programmer, volunteered to

write a few specific display applications. The original intent was

to hand-code one or two narrowly focussed applications.

The idea of replacing CRTs with workstation terminals gained favor,

and more CRTs were scheduled for replacement, including one of the

INCOs CRTs. The INCO is a primary, front-room flight controller, and

needs to monitor a large number of systems. It would be impractical

to hand-code all the displays the INCO would need, so the author

began building a tool (called the Real Time Interactive Display

Environment, or RTIDE). Originally, this tool was to be a

programmers toolkit, allowing rapid development; of hardcoded

displays. An internal survey was taken to determine requirements.

OPERATIONAL DESIGN CONSIDERATIONS

In general, the displays that RTIDE produced had to satisfy the

users. To support this broad guideline, specific requirements were
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drawnup.

The user interface had to be intuitive, consistant, and reliable.

To reduceconsole clutter, the mousewaschosenas the primary input
device.

To reduce the chanceof flight controller confusion, all mouse
buttons had to be treated identically.

To reduce the possibility of selecting the wrongmouseableobject,
RTIDEhad to inform the user whenthe mousecursor wasover a object
(absolutely required, due to safety concerns).

RTIDEhad to allow the user to interrogate the display for
additional data.

RTIDEhad to provide a consistent methodof passing information to
the user.

RTIDEhad to showdata in a variety of ways: as a digital value with
highlighting whenlimits are exceeded;as a symbolic messagewhena
value is zero or nonzero; in graphical plot form; and in bar graph
form. All these had to makemaximumuse of color graphics.

RTIDEhad to be able to support display of dynamicschematics, with
lines and boxesdriven by telemetry.

MAINTENANCE DESIGN CONSIDERATIONS

RTIDE was designed to provide a powerful user interface, but other

considerations had higher priority. RTIDE would be maintained by

flight controllers whose primary job was flight control, not

software and data file maintenance. Maintenance phase costs had to

be reduced to a minimum.

RTIDE displays had to be buildable by nonprogrammers. There were too

many displays to be done by the limited number of flight controller

programmers.

RTIDE had to be upwardly compatable with display definition files.

Having to change display definition files because of changes to

RTIDE is unacceptable.

RTIDE had to be easily expanded. Not only would this help the RTIDE

manager incrementally improve the system, but it helps other

disciplines who build graphical objects on their own.

RTIDE display definition files had to allow embedded comments. With

this, the documentation of a particular display can be included in

the display definition file. Then the file contains the entire

description of the display and no costly parallel documentation need

be maintained.
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ORGANIZATIONAL DESIGN CONSIDERATIONS

Although RTIDE would be built and maintained by flight controllers,

the hardware RTIDE ran on and the data sources RTIDE used generally

were not. Consideration must be given to future changes to RTIDEs

environment.

Multiple Data Sources

RTIDE had to be able to access different data sources. RTDS, an

internal MOD development system, was the original data source.

However, in 1990 the production Mission Control Center Upgrade

(MCCU) realtime data interface will become available, and will have

to be used.

In addition, a data retrieval system called Near Real Time (NRT)

already operates in the MCC workstations, and RTIDE should run off

of NRT data files. Besides providing a method of reviewing flight

events, this will assist in training flight controllers.

Hardware Independance

RTIDE had to be hardware independant. Currently the MCC is

transitioning from its five-year-old Masscomps to new models,

requiring software changes to many offline programs.

Configuration Manaqement

Configuration management was a key factor in basic systems design of

RTIDE. Flight controllers do not have system manager authority over

the machines they use. RTIDE was designed to be as simple and robust

as possible, to increase reliability and to reduce the chance of

misconfiguration.

Time Constraint

RTIDE was started in 6/88, and had to be ready for STS-29, in 2/89.

RTIDE DESIGN

The basic structure had to be powerful enough to support any

reasonable improvement, and simple enough to be maintained by novice

programmers unfamiliar with RTIDE.

Organization
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Theemphasiswason simplicity. RTIDEis a single process, its
executable located in a single file, reducing the chanceof having
file permissions changedor files deleted. It also eliminates having
to have the workstation configured a particular way for interprocess
communication.RTIDEuses a single display definition file for each
display. All the documentationfor the display can be included in
the samedisplay definition file, eliminating the lag between
documentationand implementation.

Event Driven

RTIDEis event-driven. Theuser (by pressing a key or mousebutton,
or by movingthe mouse), the data sources (by supplying newdata),
or the operating system (by sending interrupts) mayall trigger
events that are detected by RTIDE.Event flags are either used
directly by RTIDEor sent to the object currently selected by the
user's mousecursor. Event types can be addedas desired.

Object Oriented

In the graphics sense, RTIDE is object-oriented. The dynamic symbols

on the screen driven by data are objects. RTIDE keeps track of which

object the mouse cursor is on, and sends event flags to the object

when appropriate.

The hard code determining each objects behavior consists of five

standard functions that are located in one source file (generally

500-1500 lines long). The behavior of an instance of an object is

determined by a data structure maintained by RTIDE. Adding new

objects can be done easily by building this file and adding a

structure definition to the master include file.

User Interface

The user interface is designed to be highly interactive, using the

mouse, and as simple as possible. Interaction is needed to request

further data from the display (limit sets, telemetry status, value

range, description, etc).

Display Definition File

The ASCII (for ease of maintenance) display definition file

specifies the display's initial condition. Each entry is a series of

arguments, each setting some variable (e.g., object colors,

messages, data source, etc.).

Program Execution

RTIDE begins by opening the display definition file and reading in
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the entries there one at a time. Someentrys (screen size,
data source, etc) are used to configure RTIDE.The static graphics
entrTes are stored in case the screen is refreshed later. Object
entries are stored in the object list. Commentsare not currently
saved. RTIDEthen initializes the graphics processor, displays all
the objects, and falls into the main loop.

RTIDEmovesconstantly through a busy wait loop, first looking for
events, then reacting to them. Every cycle, RTIDEpausesfor less
than a tenth of second, allowing the CPU to run other processes.

Because pressing a mouse button interrupts this pause, a user can

increase RTIDEs CPU usage by rapidly pressing the mouse buttons.

If new data appears at the interface (nominally, once a second),

RTIDE begins to update the screen.

To minimize flicker, RTIDE divides its screen update into two

seperate cycles, the process cycle and the display cycle. In the

process cycle, RTIDE goes through the objects one at time (using

each objects process function), using the new data to update the

object. If the object needs to be updated, a draw me flag is set.

Then RTIDE goes through the display cycle, looking for draw me

flags. If one is set, RTIDE redraws it using the objects draw

function.

Every cycle RTIDE polls the mouse to find its location. RTIDE

compares the location with the information in its object list to see

if it has entered or left an object. RTIDE, once the mouse cursor

enters an object, only looks to see if it has left the object. This

limitation prevents displays from using objects inside of objects.

The cycling continues until an object (usually the exit object)

forces RTIDE to exit.

FUTURE DEVELOPMENTS

RTIDE continues to be developed, with new objects being developed

for new applications. There is more emphasis being placed on

telemetry-driven schematics to increase the efficiency of displays.

Right now we are placing all the documentation into the display

definition file. That data is not retained by RTIDE. A later version

of RTIDE will save that information, so a user can click on an

object and see a complete description of what the measurement

displayed means.

SIMULATION PERFORMANCE

RTIDE was installed in the MCC console on 2/16/89. After a few weeks

to get the display definition files debugged, RTIDE provided high

quality displays for flight controllers. Flight controllers

particularly like to be able to get more information from the
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display on request.

RTIDEwill support STS-29in Marchof 1989.

LESSONS LEARNED

Small Size

We found that running a display, its supporting algorithms, numerous

fault detection algorithms and several other realtime applications

does stress the machine. Keeping the display as efficient as

possible is necessary to allow the entire workstation to keep up

with the data. RTIDEs relative simplicity, originally specified for

other reasons, has kept its executable size down to 237Kb

(approximately 100Kb of which is the Masscomp graphics library).

Health and Status Messaqes

Experience has shown that it is vital to avoid misleading flight

controllers, and a display should do its part by telling the

controller when the data displayed is useable. The status should be

more than a simple GO/NOGO; it should give the controller enough

information to begin troubleshooting any data problem.

CONCLUSION

A user-friendly display-building tool has been developed. The

object-oriented approach allows rapid display building in realtime

command and control environments. The highly interactive user

interface allows the user to easily access additional data

describing the displays. This tool is being used in support of Space

Shuttle missions.
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KNOWLEDGEREPRESENTATION
IN

SPACE FLIGHT OPERATIONS
Carl Busse

Jet Propulsion Laboratory
California Institute of Technology

In space flight operations rapid uoderstar_:ling of the state of the space vehicle is essential. Representation
of knowledge depicting space vehicle status in s dynamic environment presents s difficult challenge. Space
flight operations personmat must work rapidly integrating personal experience with knowledge representation
provided by real-time data drivondisplays. Traditional methods have presented only an incomplete summation of
Limited system ar<J subsystem information.

New avenues of graphics tc_chrK)tegyhave provided a maans for rapid display of complex knowledge anddetailed
parametric interrelationships. The use of Large high resolution displays co_le<:l with fast display cvpdate
rates, on-screen comman<Jmenu selection, as welt as the inclusion of conTxJter graphics end color orieoted
knowledge representation and intelligent screen formatting have allowed a rapid transition from information
representation to human response.

The NASAJet PropulsionLaLx)ratory has l:xJrsueclsreas of technology associated with the eKJvance_Jlentof spacecraft
operations environment. This has ted to the development of several advanced mission systems which incorporate
enhanced graphics capabilities.
These syst_ irc L_:

1) Spacecraft Health Automated Reasoning Protot_ (SHARP),
2) Spacecraft Nonitoring Environment (SNE),
3) Electrical power Data Nonitor (EPDN),
4) Generic Payload Operations Control Cemter (GPOCC), and
5) Telemetry System Nonitor Prototype (TSM).

Knowledge representation in these systems; provides a direct representation of the intrir_sic images ass_iated
with the instr_nt ar_:l satellite teleeretry and telecorrrate_ications syste_es. The man-machir_ interface inci_s
easily interpreted contextual graphic displays. These interactive video displays contain multiple display
screens with pop-u_owindowsandintetligent, high resoLution graphics linked through context and mc_Jse-sonsitive
icons and text.

INTRODUCT ION

The Jet Propulsion Laboratory

is a lead center for NASA's

planetary exploration and earth

science program. In support of

this role JPL has pursued areas

of technology associated with

the advancement of the space-

craft operations environment.

The space flight operations

environment presents large vol-

umes of rapidly changing and

complex information to flight

control personnel. Rapid com-

prehension of spacecraft and

ground support systems condi-

tions are essential in flight

operations. Representing com-

plex knowledge is a difficult

challenge because it requires

operations personnel to in-

tegrate on-screen representa-

tion with past cognitive ex-

perience to often make demand-

ing instantaneous decisions.

The Institutional Computing and

Mission Operations Division

(37) of the JPL provides the

flight control and data manage-

ment teams, which have sup-

ported NASA space mission from

Explorer i, to the Viking

spacecraft landing on Mars

PRECEDING PAGE BLANK NOT FILMED
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and the Voyager mission to the

outer rim of the solar system

and beyond.

The Division's concentration of

on technology in the mission

operations domain has centered

on the use of enhanced graphics

in support of spacecraft and

related ground system command

and control functions. En-

hanced graphics capability in

the mission environment is sig-

nificant for three reasons.

First, carefully presented high

level knowledge representation

reduces the workload of opera-

tions personnel. Second, com-

puter-based graphics tools

[Schneiderman 1987] improve ac-

curacy of data processing and

assist space flight control

personnel in monitoring space-

craft and mission sensors where

operating data rates may great-

ly exceed the ability of in-
dividuals to monitor success-

fully. And third, as the num-

ber of missions increases, the

number of trained and ex-

perienced flight support per-

sonnel cannot keep up with the

extreme demands caused by in-

formation overload. Graphic

aids and on-screen operator

assistance allow for produc-

tivity enhancement and main-

taining the required level of

flight support. [Nansen 1988]

KNOWLEDGE REPRESENTATION

Systems knowledge can be repre-

sented be via easily visualized

contextual graphic displays

[Park 1985]. These interactive

video displays provide a direct

representation of the intrinsic

images associated with instru-

ment and satellite telemetry

and telecommunications systems.

Multiple display screens with

pop-up windows and high resolu-

tion graphics are linked

throughgh context and mouse-

sensitive icons and text.

In order to optimize JPL's mis-

sion operations environment,

the Space Flight Operations

Section (371) and the Project

Test and Operations Section

(374) have developed unique

methods of knowledge
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Figure I Typical Alphanumeric

Spacecraft Telecommunications

Display
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representation. Mission opera-

tions needs have included on-

screen display of data since

the days of Explorer I. These

original capabilities have

slowly evolved as have the

machines driving them. These

capabilities, evolved in the

present realm of graphics capa-

bility, include primarily al-

phanumerical paged displays,

such as seen in Figure i, which

have been standardized since

the Viking Mars landing and the

launch of the Voyager spacecra-

ft. Arrows in the display in-

dicate the latest telemetry

data channels updated. These

traditional displays have met

needs of space flight oper-

ationss because of relatively

large mission operations staffs

and relatively low spacecraft

data rates. As the number of

Flight Operations personnel are

reduced and mission operations

are streamlined due to budget-

ary and other considerations,

existing personnel and support

systems must function at peak

capacity. The Institutional

Computing and Mission Opera-

tions Division (37) is attempt-

ing to satisfy mission opera-

tions requirements of the fu-

ture by employing the latest

available graphics technology

to provide knowledge represen-

tation as an aid to flight ope-

rations. A display reflecting

increased use of visualization

techniques can be seen in Figu-

re 2. A key element in flight

operations is the need to adeq-

uately represent knowledge con-

cerning states and events. The

graphics requirements needed to

satisfy these needs consist of

unique representational goals.

Specifically included as the

primary knowledge representa-

tion goals in the design of

graphics tools shown in table

I.

Table I.

i. Realtime display of large volumes of diverse information

2. Rapid presentation of complex interrelated information

3. Color categorization of interrelated and multiple related

data fields

4. Instantaneous display and detection of changes

5. Promote visualization by decomposition of data into

structures and control flows diagrams

6. Enhanced interpretation of information

7. Graphical representation of knowledge states

The Institutional Computing and

Mission Operations Division has

attempted to utilize advances

in display technology to ad-

vance the spacecraft operations

environment. This work has led

to development of innovative

mission systems which incor-

porate enhanced graphics capab-

ilities to assist in flight

operations visualization.

This effort has led to develop-

ment of graphics systems which

provide improved representation

of system knowledge which im-

proves the JPL spacecraft and

instrument command and control

process. Because of the large

screen space graphic represent-

ations require these systems

mix graphics with textual rep-

resentation. The flight
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support systemmentionedincor- flight control systemsrequire,
porate several factors in com- as a minimum,the capabilities
monwhich aid in knowledgerep- shownin table II.
resentation andeffective visu-
alization of intelligence.
Knowledgerepresentation in

Table II.

i. Large high resolution displays II

2. High level windowingcapability
3. On-screenpull-down commandmenuselection
4. Color oriented knowledge representation

5. Rapid transition from informational representation to

user response

Five flight support systems have been developed which provide

examples of knowledge representation through data visualization

made possible by graphics technology. These systems are:

1)
2)
3)
4)
5)

Spacecraft Health Automated Reasoning Prototype (SHARP),

Spacecraft Monitoring Environment (SME),

Electrical Power Data Monitor (EPDM), and

Generic Payload Operations Control Center (GPOCC), and

Telemetry System Monitor (TSM).

Spacecraft Health Automated

Reasoning Prototype (SHARP)

The Spacecraft Health Automated

Reasoning Prototype incor-

porates experience of the lead

Voyager spacecraft telecom-

munications engineer into a

usable knowledge base. The

Space Flight Operations Section

(371) has provided an indepen-

dent standalone graphics cap-

ability for the prototype.

These representational capa-

bilities will be used in sup-

port of the Voyager spacecraft-

's upcoming Neptune Encounter.

System know-ledge is represent-

ed in terms of annotated space

and ground systems context dia-

grams. Displayed objects are
icons and selectable via mouse

or keyboard.

Figure 3 GRAPHICS DISPLAY FOR

SHARP

ORIGINAL PAGE IS

Of POOR QUALITY
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Spacecraft Monitoring Environ-

ment (SME)

The Spacecraft Monitoring En-

vironment has been developed by

the Project Test and Operations

Section (374) and Aura Systems

to aid in the Galileo space-

craft integration and test pro-

cess. The SME provides a real

time autonomous spacecraft test

sequencing and data monitoring

of integration and test ac-

tivity. The SME provides high-

level contextual graphic dis-

plays and windowing capability.

Command success knowledge is

presented by windowing of com-

mand issued with telemetry re-

sponses

Figure 4 KNOWLEDGE REPRESEN-

TATION IN AN SME TEXTUAL DIS-

PLAY

Electrical Power Data Monitor

(EPDM)

The Electrical Power Data Moni-

tor is being developed by the

Electrical Power Systems Sec-

tion (342) and Aura Systems.

The EPDM provides power system

engineers with automated con-

text diagrams representing

power system knowledge [Bahrami

1987_. The EPDM will support

the Voyager spacecraft during

the up-coming Neptune En-

counter. EPDM contextual re-

presentation power system know-

ledge is should in figure 5.

_ F-----.._ ACImP,w200V

Figure 5 EPDM CONTEXTUAL DIS-

PLAY
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Generic Payload Operations con-

trol Center (GPOCC)

The Generic Payload Operations

Control Center is a conceptual

prototype developed by the Pro-

ject Test and Operations Sec-

tion (374) and Aura Systems to

apply automation and high level

graphics capability to a mis-

sion operations environment.

The GPOCC goal is to couple

expert systems with high level

contextual graphics to display

to increase user comprehension

[D-5435 1987]. A prototype was

developed on an Apple Macintosh

II to demonstrate user inter-

faces and functionality of the

GPOCC concept. An example of

GPOCC contextual display repre-

sentation is shown in figure 6.

|,_u184219I[ b_'TA 1121.ii:_1LH 1

[ +'- I
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Figure 6 GPOCC CONTEXT DIS-

PLAY

Telemetry System Monitor (TSM)

The Telemetry System Monitor

(TMS) expert system, was devel-

oped by the Divisions In-

strumentation Section (375).

This system, using ART as ex-

pert system shell was developed

on a Sun workstation. The TSM

uses graphics capability to aid

in rapid visualization of the

health and display status of

the Galileo Mission Ground pro-

cessing system and display sys-

tem fault cues [Mouneimne 1989-

i- Knowledge relating the

well-being of the telemetry

system is contained in expert

systems text messages. The

graphic display pin-points

faults area. An example of TSM

Table III

representation is shown in fig-

-ure 2.

Knowledge Representation in

Future Mission Operations

As spacecraft data rates in-

crease (the Earth Observing

System project 300 Mbps), and

are support by extremely large

and distributed ground data

system the need to provide in-

terpretive knowledge of systems

status and configuration in-

creases. Graphics visualiza-

tion will continue to provide

a significant means to ac-

complish knowledge represent-

nation. Future considerations

in knowledge representation are

shown in table III.

I. Visual man-machine communication to replace

alphanumeric communication.

2. Inclusion of hyper-media (including voice

synthesis in knowledge representation.

3. Highly interactive display devices
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SUMMARY

Knowledge representation in

these systems provides a direct

representation of the intrinsic

images associated with satel-

lite and ground support tele-

communications systems. The

man-machine interface includes

easily interpreted contextual

graphic displays. These inter-

active video displays contain

multiple display screens with

pop-up windows and intelligent,

high resolution graphics linked

through context and mouse-sen-

sitive icons and text.
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ABSTRACT

The Real Time Display Builder

(RTDB) is a prototype interactive

graphics tool that builds logic-

driven displays. These displays

reflect current system status,

implement fault detection

algorithms in real time, and

incorporate the operational

knowledge of experienced flight

controllers. RTDB utilizes an

object-oriented approach that

integrates the display symbols

with the underlying operational

logic. This approach allows the

user to specify the screen layout

and the driving logic as the

display is being built. RTDB is

being developed under UNIX in C

utilizing the MASSCOMP graphics

environment with appropriate

functional separation to ease

portability to other graphics

environments. RTDB grew from the

need to develop customized real-

time data-driven Space Shuttle

systems displays. One display,

using initial functionality of the

tool, was operational during the

orbit phase of STS-26 Discovery.

RTDB is being used to produce

subsequent displays for the Real

Time Data System project currently

under development within the

Mission Operations Directorate at

NASA/JSC. This paper discusses

the features of the tool, its

current state of development, and

its applications.

INTRODUCTION

The Real Time Display Builder

(RTDB) is the result of the

effort to provide timely display

building support to the Real Time

Data System (RTDS). RTDS is a

prototype project to integrate

commercial off-the-shelf tele-

metry equipment with mini-

computer workstations to monitor

shuttle systems telemetry data in

real time. One of the initial

goals of RTDS was to develop a

display of the hydraulics system

for the Mechanical, Maintenance,

and Crew Systems (MMACS) flight

controllers for operation during

STS-26 Discovery. With three

months to define the activity,

choose the target MMACS system,

layout the display, create the

symbols, define and program an

operating environment, build the

databases, build the screen, and

test the system, there was a need

for time-saving tools.

To expedite development, the

display operating environment and

the drawing file format were

developed concurrently. The

drawing file format was initially

built by hand, but was designed

with a graphics oriented builder

in mind. After the initial

display was built and the MMACS

flight controllers began their

review, it was obvious that the

most time-consuming effort would

be the fine-tuning of symbol

positions, colors, and sizes. At

this point, initial functionality

of what was to become RTDB was

coded. The initial functions

addressed the high priority items

of position, color, size and

rotation. These functions

provided the capability to

quickly prepare the display for

flight monitoring.

As RTDS support of other systems

PRECEDING PAGE =' _"""
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disciplines has expanded,

functionality has been added to

accommodate the required uses.

RTDB has been used to build a

graphical representation of the

External Tank Ullage Pressure

System for the Booster flight

controllers. The display was used

to test the ullage pressure fault

detection algorithm. Also, RTDB

has been used to build two other

MMACS displays (Brakes/Tires and

Elevons), modify the Hydraulics

display, and build three new

Integrated Communications Officer

(INCO) displays operating with a

new Real Time Interactive Display

Environment (RTIDE) file format.

The RTIDE file format was

developed to provide specific

functionality for the INCO

discipline. All of these new

developments were operational

during STS-29 Discovery.

APPROACH

RTDB development was conceived as

a phased introduction of features.

Initial functionality was designed

and implemented to satisfy initial

project requirements, but were

integrated into an environment

that facilitated the introduction

of new features and the enhance-

ment of old. The development

required a highly structured and

modularized design with well-

defined module interfaces, yet

flexible data structures.

The data structures that described

objects had to be flexible to

accommodate the variety of

attributes that determined object

behavior. Presently, there are

over 60 MMACS and RTIDE objects

supported by RTDB. To maintain

modularity and flexibility, the

object attributes are processed

internal to the object function.

This relegates uniqueness to the

object's code and independence

from other parts of the system.

An overview of RTDB functional

modularity is presented in Figure

i. The major levels are: the

User Interface, the Menus, the

Processes, the Object Libraries,

the Translator, and the Graphics

Libraries. The structure is top-

down with higher levels deriving

functionality from lower levels.

The User Interface defines the

user's operating environment.

The primary interface to RTDB is

through a mouse and minimal

keyboard data entry. The mouse

determines functionality through

menu selection.

The Menus define command

selection and execution. They act

to interpret mouse manipulations

and to provide the inputs to

command processing.

The Processes direct command

execution. The appropriate code

is executed as defined by the

command string or object record

passed from the Menus. This

level acts as the link between

desired co_nand behavior and the

active elements that perform the

command. The command behavior is

stored as the object attributes;

the active elements are executing

processes of object instances;

and object instances are the

definitions of object behavior.

This method of object selection,

execution, and definition

provides the separation necessary

to maintain a high degree of

modularity.

The Object Libraries consist of

the file formats, object

attributes, and process defini-

tions. These represent the

object-oriented nature of RTDB's

operation. The libraries can be

thought of as a pool of commands

and objects upon which RTDB may

call to perform various opera-

tions. This is where new

functionality will be added. The

higher levels will accommodate

any additions.

The Translator is a proposed set

of macros, functions, and

makefile strategies that will

facilitate porting RTDB to other
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graphics environments (e.g. X-
Windows, IBM PC, Macintosh, MS-
Windows, etc.). This level is
still in the conceptual stage.
It will consist of macrodefini-
tions and function calls that map
the various graphics primitives
into a consistent set of function
names and argument lists. The
makefile strategies will build an
appropriate run-time module for
the target systemconfiguration.
With a proposed conversion of RTDS
to the X-Windowsenvironment, this
level will becomea necessity.

The Graphics Libraries are a
proposedset of graphics environ-
ments that will be supported.
Currently the MASSCOMP Graphics

is the only supported environment.

Conversions to other environments

will allow more people and

machines to participate in the

development process.

FUNCTIONS

RTDB is a mouse and keyboard

operated, menu-driven, interac-

tive, graphics application

development tool that builds

displays that operate under the

RTDS environment. The best way to

discuss its functionality is to

trace through the menu hierarchy.

Figure 2 depicts the menu

hierarchy. It shows current

functionality, current development

(+), and proposed development (*).

The Main Menu provides the user

access to subsequent functions.

A menu item must be selected to

transfer control to another

functional mode.

FILE allows the user to retrieve

and store drawing files. Drawing

files contain the symbol records

that define a display. A proposed

feature is to retrieve and display

scanned images. These images will

act as backdrops for displays or

become mouse sensitive with the

placement of additional mouse

sensitive regions.

COLOR allows the user to select a

particular color from a color

map, define a new color map, or

select from a pre-defined set of

color maps.

EDIT allows the user to modify

any object attribute, display

invisible objects or symbols, and

to undo a previous change.

ADD allows the user to add a new

object to a display. Available

objects are displayed in a pop-up

window. The object is selected

and placed with the mouse.

Multiple objects may be selected

and placed while in this mode.

COPY allows the user to duplicate

any visible object. After the

initial object selection,

subsequent left button clicks

will place multiple copies. This

mode must be exited and reentered

to select a new object.

DELETE allows the user to remove

an object from the display.

Multiple objects may be deleted

while in this mode.

MOVE allows the user to reposi-

tion any visible object. The

object will be repositioned with

subsequent left mouse button

clicks.

EXIT allows the user to exit the

RTDB environment. The user may

elect to exit with a save or a no

save of the current display

buffer contents.

MOVE BEHIND allows the user to

reposition an object in the

drawing file. The source

object's record is physically

placed prior to the target

object's record in the drawing

file. This results in the source

object being drawn prior to the

target object and allows the

target to be drawn on the top of

the source.

MOVE IN FRONT OF allows the user

to reposition an object in the

drawing file. The source

35



object's record is physically

placed after the target object's

record in the drawing file. This

results in the source object

being drawn after the target

object and allows the source to

be drawn on top of the target.

LOGIC is a proposed function that

allows the user to build dynamic

logic-driven displays from within

RTDB. The proposed method

utilizes a combination of two

existing tools: the Computation-

al Development Environment

(CODE), an RTDS Tool, and the C

Language Integrated Production

System (CLIPS), an expert system

language. Displays have already

been dynamically modified using

CLIPS. The remaining development

requires the integration of CODE

and CLIPS through the graphical

interface of RTDB.

OUTPUT is a proposed function

that allows the user to print the

display image to a laser printer.

CREATE OBJECT is a proposed

function that allows the user to

interactively build a new object.

Primitive drawing objects can be

combined with existing objects

and stored as a new object. The

object attributes will be created.

The new object definition will be

added to RTDB at the Object

Library level.

APPLICATIONS

A tool that embodies the concepts

of graphics, logic, and databases

has a wide area of applicability.

The most obvious being process

monitoring in which a system is

graphically modeled with sensing

and control points highlighted.

This tool would be applicable to

the Space Shuttle, the Space

Station, oil refineries, building

environmental control, computer

integrated manufacturing, etc.

Other uses include simulation,

system testing, and training.

Simulation follows from system

modeling and leads to system

testing. Verification of system

components and/or data sets can

be verified with the use of a

simulation. An extension of

simulations and models is their

use as training tools. What

better way to conduct training

than to let the student build the

system, component by component,

specifying component linkages and

operating parameters.

The evolution of RTDB as a

graphics application builder is

depicted in Figure 3. The RTDB

will act as a conduit through

which utilities will be in-

tegrated into a comprehensive

application. Those utilities

will be an applications developer

providing expert system knowled-

ge, RTIDE providing special

object and symbol definitions,

the RTDS Tool Set providing

system utilities, and CLIPS

providing an expert system

environment. Graphical expert

system applications developed in

this manner can provide a

consistent, controllable

applications interface to RTDS,

its data sources, and flight

controllers.

CONCLUSION

RTDB is an evolving tool, growing

to meet the graphical needs of a

complex environment. As flight

control techniques change and

incorporate more graphical

displays, the need to develop new

displays, convert old displays,

and preserve expert knowledge

will require the development and

use of new tools and techniques.

RTDB represents a step in this

new direction.
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By: Bradley N. Bell
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ABSTRACT

Binary Space Partitioning (BSP)

Trees have some qualities that make

them useful in solving many graphics

related problems. The purpose of

this paper is to describe what a BSP

tree is, and how it can be used to

solve the problem of hidden surface

removal, and constructive solid

geometry. The BSP tree is based on

the idea that a plane acting as a

divider subdivides space into two

parts with one being on the positive

side and the other on the negative.

A polygonal solid is then

represented as the volume defined by

the collective interior half spaces

of the solid's bounding surfaces.

The nature of how the tree is

organized lends it self well for

sorting polygons relative to an

arbitrary point in 3 space. The

speed at which the tree can be

traversed for depth sorting is fast

enough to provide hidden surface

removal at interactive speeds. The

fact that a BSP tree actually

represents a polygonal solid as a

bounded volume also makes it quite

useful in performing the boolean

operations used in constructive

solid geometry. Do to the nature of

the BSP tree polygons can be

classified as they are subdivided.

The ability to classify polygons as

they are subdivided can enhance the

simplicity of implementing

constructive solid geometry.

INTRODUCTION

The goal of this paper is

explain what a Binary Space

Partitioning (BSP) tree is and how

it can be used to depth sort

polygons and perform boolean

operations on polyhyedra. Depth

sorting of polygons is a technique

that has been widely used on

personal computers to provide hidden

surface removal. With the use of a

BSP tree polygons can be sorted fast

enough to support the interactive

display of shaded polygons with

hidden surfaces removed even on a

personal computer. Also BSP trees

can be employed to solve the problem

of Constructive Solid Geometry

(CSG) . CSG, which is implemented in

many model builders, provides the

capability to describe complex

objects as the intersection, union,

and/or difference of simpler

primitives. To understand how to

use a BSP tree it is important that

we have a clear idea of what one is.

BSP TREES

A Binary Space Partitioning

(BSP) tree is a data structure that

represents the partitioning of space

where each branching node represents

a plane that divides the space it

occupies into two parts and each

leaf represents either a polygon

(for depth sorting) or a bounded

volume (for boolean operations).

Given any point in space polygons

can be sorted far to near or near to

far by using a simple but

mathematically determined traversal

of the tree. Boolean operations on

polyhedron can be performed by

cutting the polygonal representation

of one operand by the BSP

representation of the other.

BUILDING BSP TREE

TO DEPTH SORT POLYGONS

In order to use a BSP tree to

depth sort polygons the tree can be

constructed by using the polygons

themselves as planes that subdivide

space. This can be accomplished by
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first determining the data structure

needed to define a node in the tree.

The following is used as an example.

typedef struct node

{
float A, B, C, D;

POLYGON *p_poly;

struct node *p_front;

struct node *p_back;

}
NODE;

Note: It is convenient to use

the sign of the value returned from

the plane equation when determining

if a point is in front or in back of

the plane.

Here the node contains the

polygon's plane equation

coefficients, a pointer to the

polygon representing the sub-

dividing plane, and two pointers to

nodes that represent the space in

front and the space in back of this

polygon. Well use a box to

illustrate how the tree would be

constructed (fig. 2).

BOX WITH

SUBDIVIDING PLANES SHOWN

F

< .......... +---i---+ .......... >

I B J

F 4 B B 2 F

I B I
< .......... +---3---+

F I

I
I

E I

BSP TREE OF BOX

FRONT< .... >BACK

1

/ \

2

/ \
3

/ \
4

/ \

F _ Front side of polygon

B = Back side of polygon

E - Example Eye point

(fig. 2)

Where the numbers are used to

identify the polygons that make up

4O

the box. We'll start with a group

of polygons at the root of the tree.

Then selecting polygon number i, we

will divide the remaining polygons

into two groups one representing the

polygons in front and the other

representing the polygons in back.

In this example all of the polygons

are on the back side of the first

polygon. Next we will select a

polygon from each group which will

be used to subdivide its group in

much the same way as we did the root

of the tree, and when a group of

polygons contains only one polygon

then that branch of the tree is

completed. Once the tree has been

built a simple but mathematical

traversal of the tree can be

performed to determine which order

to display the polygons in so that

the nearest one gets drawn last.

SORTING FROM FAR TO NEAR

TO begin sorting polygons from

far to near start by entering the

eye point into the plane equation of

the root node to determine which

side of the polygon the eye is on.

In (fig. 2) the eye point is shown

to be on the back side of polygon

number i. In order to sort the

polygons from back to front the half

of the tree representing the

opposite side of the polygon from

the eye must be traversed first then

the polygon in this node then the

side of the tree representing the

side of the polygon the eye is on.

So in this example we would traverse

the Front side of the tree starting

at the root before we would output

polygon number 1 after which we

would traverse the Back side of the

tree. As we traverse the tree we

perform the same eye plane test as

was done before but using the plane

equation at the node we are on in

the tree to determine which branch

of the node will be traversed first.

The tree traversal proceedure can

easily be implemented as a

recurrsive function (fig. 3 as an

example).

SORTING FROM NEAR TO FAR

To sort polygons from near to

far the process is identical except

instead of traversing the side of

the polygon that is on the opposite

side of! the dividing plane first,

you traverse the side of the polygon

that the eye is on first.
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FarToNear( n, x, y, z )

NODE *n;

float ×, y, z;

{
float p;

if(n)

{
p = n->A * x + n->B * y

+ n->C * z + n->D;

/* ASSUMING THE NORMAL OF

THE PLANE IS POINTING

TO FRONT HALF */

if( p < 0.0 )

FarToNear (n->p front,x,y, z) ;

else

FarToNear (p->p_back, x, y, z ) ;

DrawPolygon(n->p_poly) ;

if( p > 0.0 )

FarToNear (n->p_front, x, y, z) ;

else

FarToNear (n->p_back, x, y, z) ;

(fig. 3)

BOOLEAN OPERATIONS ON POLYGONAL

MODELS

One way to perform boolean

operations on polygonal models is to

use a BSP tree. This can be

accomplished by first constructing a

BSP tree representation of each

model then using the tree of one

model to subdivide the polygons of

the other model into inside and

outside components. Then depending

on the operation being performed the

pieces needed are gathered together

from_both models to form the result.

The BSP representation however

differs slightly from the one used

to depth sort polygons.

BUILDING BSP TREE

TO PERFORM BOOLEAN OPERATIONS

The BSP tree used to perform

boolean operations is constructed in

a similar way as the one used to

depth sort polygons with the

exception that the branches of the

tree represent the division of space

into inside and outside components

with the subdividing plane

representing a polygon which is part

of the model. In order to explain

how the tree could be constructed we

need to determine what type of data

structure to use. The following is

given as an example.
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typedef struct node

{
float A, B, C, D;

POLYGON *p_poly;

struct node *p_outside;

struct node *p inside;

}
NODE;

Here a node in the tree

contains a plane equation, a

reference to a polygon, a pointer to

the branch of the tree representing

the outside of the volume and a

pointer to the branch representing

the inside. To construct the BSP

representation of the model we first

select a polygon from the model that

we will use as the dividing plane at

the root of the tree. We then

proceed to divide the remaining

polygons by the dividing plane at

the root of the tree into two

groups, one to the outside of the

plane and the other to the inside.

Each group represents a branch from

the root node of the tree. Next

from each group a polygon is

selected to become the dividing

plane of its group and is placed

into the appropriate node. Each

group is then subdivided by its

associated node and placed into two

separate groups again representing

the polygons to the inside and

outside of the dividing polygonal

plane. This proceedure is performed

recurrsively until their is only one

polygon left in the group which is

then placed into its own node with

both of its branch pointers set to

0. The following is given as an

example.

DIAGRAM OF SIMPLE MODEL
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Once the BSP tree has been

constructed for both operands of the

boolean operation the polygons of

each model can be subdivided by the

other model's BSP tree. To

subdivide a polygon by the BSP tree

we take the polygon and start at the

root of the tree and test to see if

the polygon is inside, outside, or

on both sides of the subdividing

plane. If the polygon is on both

sides of the subdividing plane then

it is split into two polygons with

the one representing the inside part

and the other representing the

outside part. The polygon (parts)

is (are) then tested against the

plane in the node pointed to by the

associated branch. This proceedure

is performed recurrsively until a

branch pointing to nothing is

reached at which time the polygon

(part) is given the classification

of the branch. If the polygon being

tested lies in the same plane as the

subdividing plane then a more

complex procedure is required.

First we send the whole polygon down

the inside branch of the tree. Next

we make note of the classifications

given to the resulting parts. Then

we send each part down the outside

branch of the tree. If the part

comes back with the same

classification as it did going down

the inside branch of the tree then

it is correctly classified. Should

the part get subdivided while being

passed down then the subparts that

have the same classification are

correctly classified. The the parts

that come back with a different

classification are considered as

coplaner polygons and are assigned

the classification of OPPOSITE if

the polygon's normal points in the

opposite direction as the normal of

polygon it is coplaner to otherwise

it is given the classification of

SAME. Once all of the polygons in

both operands have been classified

in this manner the resultant model

can be formed. The following table

describes for each boolean operator

which polygons are taken from each

operand to form the resulting model.

OPERATION AND

OPERANDS A B

.......... + .....

INSIDE I X X

OUTSIDE I

OPPOSITE I

SAME I X

OR i - I
A B tAB i
..... I..... r

I F I
XX f X l

i X I
X _ f

= Do not use to form result

X = Use directly to form result

F = Flip normal of polygon

before using to form result

CONCLUSION

Even though Binary Space

Partitioning (BSP) trees can be used

to perform the tasks described in

this paper they are not practical

when working with models that are

highly complex. The tree tends to

grow exponentially as the model

complexity grows linearly. However

they do offer implementation

simplicity and therefore have a

useful place in software

development.

ORIGiNAt PAGE IS
OF POOR QUALITY
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ONBOARD SHUTTLE ON-LINE SOFTWARE
REQUIREMENTS SYSTEM: PROTOTYPE

Barbara Kolkhorst (IBM) Barry Ogletree (IBM)

INTRODUCTION

Late in 1987, the Spacecraft Software Division (SSD) of the Mission

Operations Directorate of NASA's Johnson Space Center (JSC) in

Houston asked IBM, as contractor for Onboard Shuttle Software

(OBS), to investigate the problem of storing the existing Flight Soft-

ware (FSW) requirements in an electronic form. These require-

ments defme functions related to vehicle guidance, navigation and

fright control and are thus critical to Shuttle missions. These docu-

ments, consisting of integrated text and engineering drawings, exist

as many different documents residing at several NASA locations and

were developed over approximately fifteen years as the Shuttle

program evolved. The requirements should be accessible to the

NASA community on-line; ultimately, automated requirements to

code mapping should be available.

As a result, a small technical team worked in three phases to satisfy

the NASA request. In the first phase, the team leader, several soft-

ware requirements analyst's and a system engineer familiar with

commercial product search techniques defmed the problem to be

attacked; this was documented as a request for information from

NASA. In the second phase of the task, a solution for the problem

was developed and an engineer experienced in electronic publishing

systems was added to the team. Goals were developed to determine

which solution would be proposed:

1. The requirements documents should be in electronic form under
the central control of the Shuttle Avionics Software Control

Board (SASCB) of NASA JSC.

2. Editing and publishing of the requirements should be under

strict configuration control of the SASCB. On-line viewing is

controlled by system security programs and the publishing

system.
3. The solution should be a complete integrated solution which

maximized the commercial software content to minimize devel-

opment and maintenance costs of the system.

4. In addition, the eventual goal would be to provide a solution in

which 'what is approved is published'. ]-hat is, what was

approved by the SASCB had been submitted electronically and

incorporated into the requirements data system automatically

after proper approval; no rekeying of information would be nec-

essary.

In the third phase of the project, a prototype was developed to

prove that the proposed system could indeed be used on the Shuttle

FSW requirements; several programmers were added to the team at

this time.

This three-phase task was successful and provided a solution with

very high commercial content which provided most of the function

required. A prototype solution was demonstrated in November of

1989 to the Spacecraft Software Division (SSD) and to the NSTS

Engineering Integration Office.

PROBLEM DESCRIPTION

The Shuttle FSW requirements documents consist of approximately

31,000 pages of integrated text and line drawings divided into

roughly forty-five books averaging 650 pages each. The documents

exist in several word processors and on paper at several NASA and

contractor locations. Publication is disjointed across books and

there is no consistent document architecture. Drawings are inte-

grated into the documents using manual cut-and-paste methods.

Modifications are proposed to these documents on a regular basis by

many authors and must pass through an approval process controlled

by the SASCB. Until the changes are approved, there is no hard-

copy of the requirements documents. Only approved modifications

can be added to the baseline document after a requirements writer

has certified that all changes are correct. This results in a number of

areas of concern.

First, due to the delay between submission and approval of changes

and actual publication of a hardcopy version, the software devel-

opers are often working with changes plus outdated published

requirements. Second, the requirements writer must also have

access to the latest version of the baseline document for developing

change requests. Since there is a time delay when modifications are

being submitted and ultimately approved for publication, the

requirements writer must work with outdated versions. Third, the

changes are manually integrated into the baseline document for pub-

lication and here some transcription errors may occur.

Since requirements definition is critical in the process of maintaining

space shuttle avionics software, the proposed system must address

the areas of concern and provide ways to compensate for the evolu-

tionary environment in which the software must operate. The needs

are best satisfied by a host-based publishing system because these

softw_c requirements documents are organized in a book format,

created by many authors, composed of information from numerous

sources, published for many users, and require centralized configura-
tion control.

Proposed Solution

The proposed solution includes initial document capture, storage,

retrieval, hardcopy publishing, electronic distribution, security,

change request disposition, and configuration management for the

requirements documents.
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The initial capture of the documents will be done by either scanning

printed pages or through conversion of various electronic word

processor formats to the system format. Scanned pages will be con-

veiled to text and image files by an intelligent recognition engine

and custom software. Finally, the proposed system will provide the

foundation for future interfaces to other systems for tracking Space

Shuttle components.

As a further enhancement, application bridges to other NASA

s) stems can be developed to connect the requirements document

system to other Space Shuttle components and systems. It is also

highly desirable that the system be integrated into the existing

NASA computer software and hardware base.

Proposed Solution Rationale

It should be noted that alternative solutions were investigated. A

solution was considered where the requirements documents were

stored as scanned images with no modification capabilities. The

existing process for document creation and modification could be

used and a configuration control system could be built around this

manual process. Neither of these two solutions would provide

NASA with as much flexibility to manage and control the entire

documcnt process as would a publishing solution.

A host based solution was chosen over a work-station based sol-

ution because of the volume of documents to be managed, the secu-

rity control required to protect access to and integrity of the

documents, the greater variety of printers, terminals, and storage

devices available for attachments, the ability to connect to the

existing information network as a host system, and the capability of

supporting a larger number of simultaneous end users. The pro-

posed solution does take advantage of the power and flexibility of

intelligent work-stations to download a section of the requirement

documents, modify or print selected sections, and submit the modifi-

cation as a Change Request. This proposed solution allows NASA

to build a strategic electronic requirements document system now
and for the future.

"llae hardware for the actual solution consists of a scanner capable of

intcRigent character recogrution and the separation of images from

text, all points addressable printers at both the workstation and host,

an intcifigent workstation processor, disk storage and an IBM com-

patibb hcxt. on NASA's JSC Center Information Network (CIN).

The software for the proposed solution consists of two parts: a host

part (a publishing systcm with support for viewing and control of

documents) and a workstation part (a desktop publishing product

and some custom user interface software). In addition, there is soft-

ware to allow documents or the workstation to be converted and

tran/errcd to the host, supporl for scarmer operation, filters which

convert documents created on other word processing systems to the

host publishing system format, and software used to view the pub-

lished documents. Security and configuration control are provided

by either the publishing system or the operating system. See Figure

1 for a pictorial view of the system. Figure 2 describes the hardware

and software defined for the solution which are included in the pro-

totype system.

System Hardware

The publishing host (shown in Figure 3) consists of an IBM System

370 processor, magnetic disk storage, a tape unit, a disk controller,

all points addressable (APA) printers, and terminal and communi-

cation controllers. (In the future, optical disk storage may be added

to allow increased capacity.) It is proposed that NASA use or share

an existing host hardware system (tapes, disk, terminal and commu-

nications controllers already in place) for this application.

Figure 1. Modular view of the OBS On-line Software Requirements

System

The magnetic disk storage will contain the active requirements docu-

ments and the application libraries. "I]ae application libraries will

require approximately t megabyte of magnetic storage, l'he

Onboard 3nuttle Flight Software requirements documents will use

10 gigabytes of magnetic storage. The 10 gigabytes of storage wilt

allow up to 200 active books (130,000 pages) to be maintained with

on-line access. Frozen requirements documents will be archived on

the optical storage jukebox. Soing for the jukebox will be deter-

mined after initial implemm*tation.

l'he page printer would be used to produce camera ready hardcopy

documents. The IBM 3820 or 3800 printer is capable of printing

complex pages consisting of text, graphics, and images. (However,

any all points addressable printer capable of interfacing with the

IBM Publishing System could be used to produce cameras ready

documents.)

q'l-te recommended workstation for the Publishing Specialist, and the

SASCB Administrator is an IBM Personal System/2 (PS/2) Model

80 (machine type 8580). The PS,_2 has an 80386 microprocessor

with MicroChannel architecture and 80 nanosecond memory. The

workstation configuration consists of six megabytes of memory, a

115 megabyte fixed disk, a mouse, a 1.44 megabyte diskette drive,

and a high resolution IBM 8514 display monitor.

Figure 2. Further Comparison of Solution vs. Prototype
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Figure 3. OBS Online Software Requirements Hardware Overview
Some workstations will have a scanner, such as the Palantir Com-

pound Document Processor (CDP) 9000, and a workstation printer,

such as the IBM 4216 Page Printer. The Palantir CDP 9000 will

provide the capability to scan a document up to 8.5 _ X 14 _ in size at

a resolution of 300 dots per inch; additional scanners using other

resolution densities may also be attached to the Calera recognition

engine. In addition, its recognition accuracy improves as more data

is scanned. For workstations performing graphics modification, a

second monochrome display may be required.

Graphics terminals on the CIN may be used to view documents and

to w_ri_e,do,',ur_c, ntary change requests. These change requests must

eventually be keyed into the source flies on the host by a publishing

specialist.

Scanners and Graphics Concepts

Scanners for graphics work can be categorized on the basis of several
characteristics:

• Type of scanning mechanism (flatbed versus page feeder)

• Resolution (low of 75 dots per inch (dpi), high of 1500 dpi)

• Intelligent characteristics:

- Text recognition (specific fonts versus any font)

- "Tagging" (output of text to word processor formats)

- Graphics handling (manual versus automatic)

For graphics work (especially the handling of integrated text and

graphics), the ideal solution would be to let the scanner handle all

aspects of the conversion process: feed the document into the

scanner, separate out text and graphics, perform text recognition,

and place _he. out.put into text and/or graphics fdes automatically. In

practice, this is difficult to achieve:

• A major factor in this problem is the difficulty invoh'ed in iden-

tifying the start/end of graphics sections.

One workaround is to let the user specify the location of

graphics sections (this of course requires manual inten'ention).

• Inability for the computer to understand document "structure"

(what figures go where).

This might be due to the inability of most PC-based word

processors to handle graphics (this is becoming less problematic

with the advent of new word processors which support graphics

manipulation).

Another area of difficulty is in text recognition. This is a "graphics-

to-text" conversion where the scarmer looks at the pattern of dots

produced during scanning and makes a decision about the character

represented by that pattern. Some scanners are unable to support

this feature (requiting software to do the job); some scanners can

only support a limited set of fonts. The most powerful machines
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perform "intelligent character recognition", recogmzing any font style

or size; perform spelling correction, marking unrecognized words for

later correction; and decipher page layout automatically, distin-

guishing between text and graphics sections.

The C',dera scanner used in this prototype has the features required

to support this project. It is a sheet-feed (50 pages maximum)

scanner with adjustable resolution (maximum 300 dpi), spelling dic-

tionaries, and intelligent character recognition. In addition, it is

represented as a "compound document processor', being able to

scan integrated text graphics documents; however, in its stand-alone

mode it requires user intervention to designate graphics areas which

are later placed in separate fries. There is a board available from the

same company which purports to handle integrated text.'graphics

automatically, but it was not available at the time the prototype was

developed.

During the development of our prototype, we encountered several

problems relating to graphics/text work:

• Recognition of special characters.

Special characters (underline, super and subscripts, etc.) are diffi-

cult to scan properly.

• l_egistration of pages in scanner

Straight lines in the source document become "stair-step" lines

in the printed version. The workaround is to use a flat-bed

scanner (less problems, but the stair-step effect is still notice-

able). This also means production work is more difficult due to

the necessity of handling each page separately.

• Loss of image "content"

The scanning process produces raster fries; the original image

may have been produced by a vector process. This means that

the information about object structure has been lost. "Ilaere are

pr:_grams available which can re-vectorize a raster-based image,
but the robustness of the conversion is unknown.

Hardware and software to do image to vector conversions for

enginecring drawings will be studied later in this project.

• Lack of consistent support for "standard" image formats.

Specifications are defined for various image formats (TIFF,

PCX, etc.) but some programs support only a subset of the

available options. If the programs being interfaced do not under-

stand the same set of image data, problems occur. A

workaround is to understand exactly what is required by avail-

able programs and select those with matching capabilities.

• Storage requirements may be prohibitive for raster format fries.

Scanning an 8 1/2 by 11 inch page at 300 dpi results in about

8.5 Mbits of data (uncompressed). Certain formats (e.g. TIFF)

can support various compression schemes to reduce the require-

ment for storage space. The resulting frie may still require about

1 Mbyte of storage; vectorized fries require far less storage.

System Software

The proposed software will be distributed between the host and the

PS/2 Model 80 workstations. The prototype host software consists

of the VM Operating System, IBM Publishing System and the nec-

essa.,3' support services and utilities. The workstation software con-

sists of IBM's Disk Operating System (DOS), Interleaf Publisher,

and scanner support and image editing software. Custom code in

both the host and workstation will facilitate transfer and configura-

tion management of data fries.

The host Publishing System software executes in the IBM VM

operating system environment and is designed for corporate in-house

publishing. An MVS solution is planned for NASA JSC use; it

integrates the in-house publishing process from start to fmish,

including typeset-quality output of documents containing text,

graphics and image. IBM's electronic publishing solution uses the

host computer, workstations and printers to create, display and print
documents.

The host Pubfishing system is an integrated set of software products

(shown in Figure 4) and consists of:

• Publishing Systems ProcessMaster: A set of menus that con-

trols the overall operation of the publishing system and provides

a document control library management facility.

• Publishing Systems BookMaster: A powerful document cre-

ation application based on IBM's Generalized Markup Lan-

guage (GML) that provides the tools necessary to create

complex document formats.

• Graphical Display and Query Facility (GDQF): A package for

viewing and editing CAD/CAM and other graphics data fries on

the _,os;.

• Publishing Systems BrowseMaster: A series of utilities (pro-

vided in GDQI:) to:

- View merged text, graphics and image

- View and crop GDDM Graphics Data Format (GDF) fdes

and convert them to page segrnents

- Import drawings from non-lBM CAD/CAM systems

• Publishing Systems DrawMaster: A menu-driven line art

drawing package for creating graphics for use in publications.

• Image ttandling Facility: A program to manipulate images for
inclusion in documents.

• BookManager: An application for electronically viewing docu-

ments stored at the publishing host (SmartBook, an IBM

internal product, is used in the prototype).

The workstation publishing software will be the IBM Interleaf Pub-

fisher. This standalone product executes under DOS on an IBM

Personal System/2 model 80. The IBM Interleaf Publisher is a full-

function, integrated publishing program.

t

t

I

+

I...............!

Figure 4. OBS On line Software Requirements System Software Overview
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Workstation-Based Functions

Scanner Suppod

Calera provides software with their scanner that assists the user in

performing scanning chores. ]'his software is divided into two types:

applications (PAGEBLD, EDITPRO, TOPSCAN) and utilities

(such as PDA2TIFF, DOCBUILD, and others provided by the

scanner manufacturer to assist in custom software development).

PAGEBI.D is the primary software used for scanning integrated

documents. The scanner can be completely controlled from a full-

screen (Windows-based) menu; functions to scan and read pages,

save results, and work with the document are provided The docu-

ment is defined as having "zanes" of information. Some zones

contain text and are processed using text recognition techniques;

other zones are graphics and are processed into CCITT-format files.

To automate the process, zones may' be predefmed in "Zone Format

Files"; this is useful when scanning must be automated, but it

requires that pages adhere to a consistent format.

After the document has been processed by' PAGEBLD, the next

step is to use EDITPRO. This is a Windows-based application

which helps the user fmd places where PAGFBLD and the scanner

hardware had some difficulty recognizing text. Optional marks can

be placed in the processed files; if present, these marks are used to

drive the EDITPRO software. Functions are provided to move from

mark to mark and the errors found may be changed while in

EDfI'PRO (no need to use a separate word processor). After errors

have been removed, files are created with the corrected information.

TOPSCAN is an appfication that provides scanning functions which

understand most popular PC-based word processors and graphics

formats. Text recognized by the system can be placed directly into a

format understood by the user's word processor; graphics fdes are

placed in TIFF format and can be used by any program under-

standing this fde type.

Utilities

The scanner manufacturer supplies a set of utilities which assist the

user in developing customized scanning applications. These utilities

include standalone special-purpose programs that can build docu-

ment files from text or image input, compress and decompress image

files using CCITT Group 3 or Group 4 algorithms, modify' text files

to remove white space, and operate the scanner in a command-line

driven (rather than graphics menu-driven) manner.

Graphics Manipulation

Manipulation of image files can be performed on the workstation or

on the host system. For workstation-based image editing, IBM's

ImageEdit is available. This program understands various file types

(including TIFF) and provides editing to a pixel-level as well as the

capability to draw lines, circles, and other basic shapes. It can

produce TIFF files in both uncompressed and compressed forms.

Host-Based Functions

Because of requirements specified during the prototype definition

phase, the major portion of the system resides on IBM mainframe

computers. The environment (especially from a software and printer

viewpoint) is considerably different from the personal computer

enviromnem; graphics formats are unique (GDF is used for vector

files, IMG is used for image files). Image tlandlmg Facility (IHF)

and other programs in the IBM Publishing System are required to

convert images to the format required for printing; this format (Page

Segments or PSEG) is used because of the system which prints doc-

uments with imbedded images (Document Composition Facility or

DCF).

Graphics Manipulation

The primary formats utilized on the host are:

* Vector-based

GDF, CGM

• Raster-based

IMG

ttost software is available to manipulate both types of format.

DrawMaster is a product which produces vector-based fdes (GDF

and others); IIIF is available to edit raster-based (IMG) files.

Viewing

Viewing of documentation is provided by two programs:

BookManager (for text-based document reference with graphics

support) and BrowseMaster (for publishing system specialists

required to proof documents before printing). For the prototype, an

IBM internal use tool called SmartBook was used to provide

BookManager functions; it was the precursor to the BookManager

software.

BookManager is the program of choice when users must refer to

text and be able to browse figures which are present in the docu-

ment. It operates by displaying the document in text mode (which

means that users without a graphics terminal ",,,'ill be able to read the

document) unless the user requests that a figure be displayed; the

system then changes 1o a graphics mode and displays pictures speci-

fied by a user command. BrowseMaster is most useful to individ-

uals requiring information about the layout of the document and

who must provide error-free printing (as far as layout and appear-

ance are concerned). It is used to provide a preview of the layout (a

page image including margins and simulated text) so that those indi-

viduals responsible for printing the document can insure there are no

major errors before submitting the job to the system printer. This

method is similar to some PC-based word processors which allow

the user to look at a page before printing it, resulting in savings of

time and system resources such as paper.

Printing

Printers available on the host system range from line-based to laser-

compatible (IBM's 3820 printer is the printer of choice). The 3820

used in the prototype is a host-connected printer capable of 240 dots

per inch and a print speed of 20 pages per minute; since its resol-
ution differs from the resolution available with the Calera scanner, a

problem with image degradation occurs. This problem can be

avoided in two ways: scan images and reduce them to the required

size using the Publishing system, or use an alternate scanner (such as

the IBM 3118) which is capable of scanning at the same resolution

as the printer (240 dpi).

Summary

The prototype discussed in this paper was developed as proof of a

concept for a system which could support high volumes of require-

ments documents with integrated text and graphics; the solution

proposed here could be extended to other projects whose goal is to

place paper documents in an electronic system for viewing and

printing purposes. The technical problems (such as conversion of

documentation between word processors, management of a variety

of graphics fde formats, and difficulties involved in scanning inle-
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grated text and graphics) would be very similar for other systems of

this type. indeed, technological advances in areas such as scanning

hardware and software and display terminals insure that some of the

problems encountered here will be solved in the near-term (less than

five years). Examples of these "solvable" problems include auto-

mated input of integrated text and graphics, errors in the recognition

process, and the loss of image information which results from the

digitization process.

The solution developed for the Online Software Requirements

System is modular and allows hardware and software components to

be upgraded or replaced as industry solutions mature. The extensive

commercial software content allows the NASA customer to apply

resources to solving the problem and maintaining documents, rather

than spending a large portion of the maintenance resources on
custom software.

The actual conversion of scanned text and drawing images to a form

which can be stored in a publishing system provides NASA with the

capability to transfer any paper documents to editable electronic

form for maintenance and update. As the various filters are procured

or developed, documents which exist in other word processor

formats may be added to the central Ides. The central repository

may consist of magnetic storage for active documents and optical

storage for documents which have been frozen in final format. This

system may be used for storing and maintaining any documents

consisting of integrated text and drawings.

This electronic base of information is suitable for future applications

such as hypertext, where specific reference points in the documents

are electronically linked to other documents, other parts of the same

documents or note information. Additional search and query capa-

bility will also provide the NASA community with the ability to

obtain information more rapidly than was ever possible with paper-
based documents.

Definition of Acronyms

CAD. Computer Aided Design

CAM. Computer Aided Manufacturing

CG3,|. Computer Graphics 3,ietafile

CIN. Center Information Network

CI)P. Compound Document Processor (from Calera)

DOS. Disk Operating System

I)Pi. Dots Per Inch

FSW. [:light SoftWare

GDI)M. Graphical Data Display Manager

GI)F. Graphics Data Format

GDQF. Graphical Display and Query Facility

GMI,. Generalized Markup Language

IIIF. Image Handling Facility

IMG. IMaGe Format

JSC. Johnson Space Center

MVS. Multiple Virtual Storage

NSTS. National Space Transportation System
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OBS. OnBoard Shuttle software

PC. Personal Computer

PCX. PC Paintbrush Graphics File Format

PPM. Pages Per Minute

SASCB. Software Avionics Software Control Board

SSD. Spacecraft Software Division

TIFF. Fagged Image File Format

VM. V_rtual Machine

WS WorkStation
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DESIGN CONSIDERATIONS FOR A

SPACE DATABASE

Lance M. Moss

Evans & Sutherland Computer Corporation
600 Komas Drive

Salt Lake City, Utah 84108

Part of the information used in a real-time simulator is stored in the visual database. This information is

processed by an image generator and displayed as a real-time visual image. The database must be con-
structed in a specific format, and it should efficiently utilize the capacities of the image generator that it

was created for. A visual simulation is crucially dependent upon the success with which the database pro-

vides visual cues and recognizable scenes. For this reason, more and more attention is being paid to the art

and science of creating effective real-time visual databases. This paper investigates the database design

considerations required for a space-oriented real-time simulator. Space applications often require unique

designs that correspond closely to the particular image-generator hardware and visual-database-

management software. Specific examples from the databases constructed for NASA and its Evans &

Sutherland CT6 image generator illustrate the various design strategies used in a space-simulation

environment. These database design considerations are essential for all who would create a space database.

1.0 INTRODUCTION

During 1987 and 1988, Evans & Sutherland designed
and developed three databases for NASA'S System
Engineering Simulator. Much of the experience
gained and many of the techniques used in the con-
struction of a terrain database were transferred to the

construction of the space databases, but many new
challenges were encountered. This paper describes
some of the challenges unique to the design of a space
database and explores the techniques and strategies
developed to meet these challenges.

2.0 VISUAL SYSTEM

A major part of a real-time vehicle simulator is the
visual-scene-generation system. The visual system's
role is to provide the visual cues that help make the
simulation effective. In general, a visual system

comprises a computer image generator, which is the
processing hardware; displays on which the
computer-generated imagery is viewed; a visual
database, which is the information the image

generator processes to produce images; and a set of
managing software, known as the real-time system.
The image generator includes a set of processors,

among them viewpoint processors and channel
processors. The visual database is a model of the real-
world environment. The real-time system is the
interactive software package that controls and
manages the image generator's transfer and
processing of the data in the visual database.

For a database to reach its utmost visual potential,
each construct within it must be used efficiently.
Therefore, no database should be designed without an
understanding of its visual system's processing capa-
bilities. Some of the necessary design information in-
cludes:

1. The configuration of the image generator
(including the number of viewpoint proces-
sors and channel processors) and the update
rate.

2. The maximum input and output of each
processor in the image generator

3. The maximum visible output for each channel

4. The amount of time allotted for each processor
to accomplish its task

5. The amount of on- and off-line storage avail-
able for the database

Database engineers must analyze all the processing
requirements before a design is developed. With the
resultant knowledge, a database can be constructed
that will fully utilize the capabilities of the image
generator. However, this information must be corre-
lated with the specified database requirements.
Sometimes database requirements tax the capabilities
of the given visual system. In these cases, ingenuity in
the design can satisfy the requirements and still not
overload the image generator. Extreme cases may oc-
cur where specific database requirements have to be
modified slightly to meet the image generator's capa-
bilities and still provide an effective simulation.
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3.0 SPACE DATABASES AND TERRAIN
DATABASES

Terrain databases are usually designed at a 1:1 scale

with the terrain they model and only represent a rela-
tively small portion of the real world. A space
database, on the other hand, because of the sheer size
of the model environment, cannot possibly model all

of its objects at a 1:1 scale. For example, one of the
requirements of the NASA space databases was to cre-
ate an accurate starfield. The star nearest Earth, Alpha
Centauri, is approximately 4.4 light-years away. Hence,
some models must be created so that they appear vi-

sually correct even though they may be mathemati-
cally incorrect.

A space database has the potential of depicting its
modeled environment more realistically than a ter-
rain database can because many of the models in-
cluded in it -- the Orbiter, the Space Station, the
Shuttle Remote Manipulator System (SRMS), and pay-
loads, for example -- are manmade and tend to be
geometrically regular. Computer graphics is an ex-
cellent medium for rendering such regularities.
Natural objects such as Earth's surface and the moon
can be easily and effectively modeled with photo-
derived-texture patterns.

Space databases generally include less information
than terrain databases. Most terrain databases cover

many hundreds of square nautical miles of terrain
and contain enough information to create scenes that
include bushes, trees, rocks, rivers, roads, cities, and

farms. But a space database must contain only a few
hundred accurate stars, a brilliant sun, a realistic
Earth, a life-like moon, and a few extremely high-
fidelity models to create an uncanny likeness of the
real thing. Figure 1 is a photograph taken of an actual
display that illustrates this realism.

The space databases designed for NASA contained all
these models and used only approximately one fifti-
eth of the file space required for a typical terrain
database. Although the space databases were small
with respect to their storage requirements, their vi-
sual effectiveness equalled that of any terrain database
designed to date.

4.0 ORGANIZATION OF A SPACE DATABASE

A visual database is a composite data structure in the
form of a tree that specifies the hierarchical relation-

ships among the items in the database. A space
database has the same format as any other type of vi-
sual database, but the design and organization of a

space database are quite different from those of a
terrain database.

4.1 Static and Dynamic Models

The models that compose a space database can be cate-

gorized as static (remaining fixed at a specified origin)
or dynamic (having independent motion capabilities).
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Figure 1. Photograph of a Displayed Space Database

Depending on the simulator's mission and other fac-
tors, models may switch categories. Since everything
in space is dynamic, it might initially seem easiest and
most logical to make all the models in a space
database dynamic. However, the image generator ac-
commodates only a finite number of dynamic coordi-
nate systems and may not (depending on its load) be
able to process all those systems at once. A static
model requires very little processing time for its ge-
ometry to be displayed; a dynamic model requires ad-
ditional processing time, depending upon the type of
motion specified. Therefore, the number of dynamic
models should generally be restricted as much as pos-
sible in order to limit the amount of time used to

process them.

Depending on the particular scenario's requirements,
any or all of tile models of Earth, the sun, the moon,
stars, or other items in the database could be static and
at the same time serve in an effective simulation. For

example, in a given scenario designed only to train
specialists in the use of the SRMS, if the Orbiter never
needed to move, it could remain static at the

database's global origin. A static orbiter would have a
fixed orientation with respect to the other database
models, but this fact might not limit the effectiveness
of the images produced for the scenario in any signifi-
cant way.

The number of dynamic coordinate systems and the
corresponding amount of processing time constrain
the number of dynamic models that can appear in a
given scenario. However, useful scenarios require
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that many objects (the Orbiter, the SRMS, and payloads

in the space databases, for instance) be categorized as

dynamic. Therefore, the database engineers must de-

cide which models have to be dynamic for each sce-

nario. Determining a finite list of dynamic models for

a given scenario is not difficult, but if the dynamic

models required for one scenario are different from

the ones required for others, the complexity of the

task increases significantly. When the set of scenarios

requires more dynamic models than the image gener-

ator can process, an alternative must be found. The

approach taken in designing and developing the space

databases for NASA entailed two strategies: design of

each database as a scenario-dependent database and a

technique for choosing model selects.

4.2 Scenario-dependent Database

A scenario-dependent datatabase is a database that is

broken into smaller, simpler pieces. Evans &
Sutherland CT6 linked databases contain between 1

and 60 entry-point sets. Each entry-point set is inde-

pendent of all the other sets and consists of a specific
collection of related database-tree structures. Each

entry-point set can have its own unique tree structure,

and therefore each can represent a given scenario

with an independent database design. Separate linked

databases could be used in the same manner as entry-

point sets within a database. A scenario-dependent

database provides great flexibility. Since each entry-

point set (or separate database) has its own tree struc-

ture, each can have its own attendant dynamic and
static models.

4.3 Model Selects

The databases were organized so that the viewpoint

processor makes a series of hierarchically structured

choices, or model selects, that determine the require-

ments for any given scenario. A CT6 image generator
allows 128 different model selects for each dynamic

coordinate system and has the unique capability of

performing model selects of dynamic coordinate sys-
tems in real time. This feature is often used for ani-

mation. Because the top-level structure is designed so

that there are several mutually exclusive model se-

lects, when the viewpoint processor starts its trace of
the database tree it also starts to determine the current

scenario's requirements based on the model selects

chosen for that field by the simulator-host-computer

program. Each of the top-level model selects points to

another structure that in turn is attached to a dynamic

coordinate system with multiple model selects. The

viewpoint processor continues this tracing of nested

model selects until it incorporates all the specified

scenario requirements.

5.0 DESIGN CONSIDERATIONS

Once the organization of a space database is de-

termined, other aspects of the design can be consid-

ered. Some of the main issues and challenges

encountered in the design of the space databases, the

resolutions of the challenges, and the ramifications of

the decisions made concern the database's coordinate

system, database units, the construction and

placement of models, the uses of texture, collision de-
tection, the simulation of closed-circuit-television

systems, and the overall modularity and flexibility of
the databases.

5.1 Coordinate System

NASA'S space databases were designed with an orthog-
onal Cartesian coordinate system. If the simulator-

host-computer program were to use a different

coordinate system than the image generator does (a

celestial coordinate system, for example), all motions

controlled by the simulator host computer would

have to be transformed to map that coordinate system

into the image generator's coordinate system.

All of the NASA models were constructed about or

relative to the origin of the image generator's coordi-

nate system. However, the placement of the origin,

the database unit of measure, and the overall size of

the database affected the design of the individual

models.

The most likely location for the database's global ori-

gin is the center of geometry (or center of mass) of the

main scenario model. The Orbiter's origin was chosen

as the global origin of the database that included the

Orbiter, SRMS, and Space Telescope models. Each of

these models was easily defined relative to the origin

of the Orbiter, and every scenario maintained the

Orbiter as a static model at the global origin. However,

this origin was not appropriate for the other two

NASA databases, and therefore other origins were se-
lected.

5.2 Database Units

The size or volume of a database is limited by the

highest number the image generator allows and by
the chosen unit of measure. A CT6 image generator
does not use an inherent unit of measure as a

database unit; it simply interprets all database values

as numbers with a maximum and minimum range.

Any unit of measure can be used to create a database

as long as the relative scale between database models
is maintained. The most common database unit for
terrain databases is the foot. The database unit chosen

for the space databases was the inch.

5.3 Models

The models used in a space simulator must be ex-

tremely accurate. They are the only visual cues in the

database because black space, unlike terrain, does not

provide much in the way of feedback. The models are

also generally viewed at a much closer range than

models in a terrain database, so they need to include
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as much of the geometry of the real-world object they

represent as the image generator can process. Most

scenarios require extreme accuracy in motion, colli-

sion detection, and interaction, so the models must

provide all of the cues needed to make a given sce-
nario effective.

Each model in the space databases was constructed

with information derived mostly from detailed engi-

neering drawings, but because many of the actual ob-

jects had not yet been constructed, the models were

continually subject to reevaluation. The Orbiter was

the only item that had been constructed before devel-

opment of the databases began. Because such high fi-

delity was required of the models, the Orbiter model

geometry was created through a process that involved

automatically scanning a scaled replica, digitizing

hundreds of vertices, and defining the polygonal

boundaries. Although the process was involved, it

was very efficient and quickly accomplished, and the

end result was extremely accurate.

Since the chosen database unit and the maximum

value allowed by the image generator limited the

overall size of the database, some of the database

models could not be constructed at a 1:1 scale. Instead,

they had to be created at other scales and then posi-

tioned to appear their correct sizes and to maintain

the integrity of the simulation.

One of the requirements specified for the space
databases was an accurate starfield. The inclusion of

stars of various intensities and locations in a sea of

black greatly enhances the illusion of space. Space
without stars is about as useful as unembeltished ter-

rain is for a flight simulator. Digistar, a star-projection

system developed at Evans & Sutherland for

planetariums, provided the information used to cre-

ate the starfield for the space databases.

The starfield model has more than 1600 unique stars

that appear to be in their correct locations. The model

is a sphere consisting of light points; the center of the

sphere is at the global origin of the database. The

sphere was scaled to fit within the allowable database

size and each light point was assigned an intensity

that would simulate the apparent magnitude of the

star it modeled. Because many constellations can be

recognized in this starfield model, it could easily be
used for directional information.

Two static models and dynamic-texture motion were

used to create the illusion of an orbiting satellite and a

rotating Earth. The database unit coupled with the
maximum size of the database determined that a full-

sized Earth could not be modeled. Therefore, a scaled

model of Earth was created and placed artificially close

to the orbiting vehicles. This strategy effectively cre-

ated the illusion of an accurate orbit and met the re-

quirements of the application.

To complete the illusion of Earth as seen from an or-

biting satellite, photo-derived dynamic texture was

applied to the Earth model and given a directional

velocity that approximates the speed at which a satel-

lite such as the Orbiter passes over a given point on
Earth's surface. So the simulated orbit is in essence the

opposite of what happens in the real world: the orbital

vehicle is static and Earth moves by below it. This

effect was possible because the CT6 image generator

has the ability to create real-time texture motion.

Because Earth, in this case, could be built as a static

model, it was modeled as a disk rather than as a

sphere. Modeling Earth as a disk makes it difficult to

simulate its dark side, but this disadvantage is offset

by the fact that valuable dynamic coordinate systems

and viewpoint-processor time are preserved for other

uses. However. the same illusionary techniques could

be used to construct a spherical model of Earth.

Since there is no atmosphere to interfere with light in

space, colors are more vibrant than on Earth and there

is a crisp contrast between light and dark. Therefore,

color assignments, usage, and tuning are important

design factors. Since the visual-system displays cannot

reproduce the contrasts found in space exactly,

relative brightnesses must be assigned to certain
models. No model should be colored as black as the

blackness of space, for example.

5.4 Texture

2D texture can realistically enhance computer-

generated imagery and has the great advantage of gen-

erally not affecting the processing load. Because tex-

ture in a CT6 image generator is processed in parallel

with polygons, a scene consisting of the maximum

number of processable polygons can be enhanced by
the addition of texture and still not overload the

image generator.

Since the fidelity of the models was an important

criterion of the space-database requirements, texture
was often used to effect visual cues without increasing

the number of polygons. These applications of texture

significantly enhanced the Earth and Orbiter models.

The entire surface of Earth is simulated by a photo-

derived, self-repeating texture map applied to a group

of polygons. The Earth model, because of its special

texture application, maintains a slim polygon budget

and is therefore a very efficient model.

The Orbiter was also modeled with texture. The in-

signia on the outside surfaces were created with tex-

ture. The American flag, all thirteen red and white

stripes and all 50 stars on a blue background, was cre-

ated with one tLexture map and four polygons. Photo-

derived, self-repeating patterns adorn the inner bay

with a thermal wrap pattern and the outer skin with
tiles.

All of the additional visual cues created with texture

allow the image generator's polygon capacity to be

spent where texture cannot be used, as for the hun-

dreds of truss polygons on the Space Station.
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Simple 2D polygons with texture applied to them can

simulate complex 3D structures. The most notable of

these illusions is the texture application that simu-

lates the inside volume of the End Effector (EE) with

just one polygon. The EE is essentially a hollow cylin-

der whose inside portion is seen from many eye-

points. Since the use of polygons on an inside surface

was considered wasteful, a special texture pattern was

applied in a plane other than that of the polygon that

capped the end of the EE. The resulting parallax cre-

ated an illusion of depth that is almost indistinguish-
able from that of an actual modeled volume.

Noncoplanar texture is another robust capability of

the CT6 image generator without which this illusion
could not have been created.

5.5 Collision Detection

One of the most important functions of a space
simulator is the detection of collisions between vari-

ous objects. The collision-detection function can be

used for purposes other than detecting when two

models collide, however. For example, the complex

simulator task of grappling a payload with the SRMS

would be virtually impossible without the aid of colli-

sion detection. An appropriate viewpoint-processor-

timing budget must include enough time for all of the

collision-detection requirements.

Collision detection is another reason for constructing

accurate models. The database must reproduce the
real world in order for the simulation to be effective.

Otherwise, collision detection might not be reliable.

5.6 Closed-circuit Television

In an actual space mission, a significant portion of the

scenes outside the Orbiter are viewed through closed-

circuit-television (CCTV) systems. These sophisticated

systems have a built-in process called automatic level
control (ALC) that adjusts the CCTV according to the

light sources it receives. Remotely similar to the light
meter and f-stop combination on a camera, ALC is an

automatic process used to improve and adjust image

quality.

One of the requirements of the space databases was to
simulate the effects of ALC. The simulation is done

through detection of light from its various sources
(sun, moon, Earth, and floodlights) and concomitant

adjustment of the scene illumination. Unique struc-

tures had to be created on each of the light-source

models. The image-generator function used these

unique structures to detect when the light-source
models came into view. The real-time system would

notify the simulator-host-computer program when
the models came into view, and the simulator-host-

computer program would then adjust the illumina-
tion of that channel. Without the characteristics of the

CCTV system and ALC, every scene would appear as

though it were an out-the-window view and the sim-
ulation would not be accurate.

5.7 Modularity and Flexibility

The structure of a space database must be modular
and flexible because the database will probably be used

for many applications over a wide range of projects.

Therefore, each model must be designed, organized,

and documented so that another engineer can make
modifications to it in the future. Furthermore, the

top-level structure must be clean, concise, and simple,

with adequate and descriptive documentation. This is
especially important for scenario-dependent databases

or fully compatible model-select databases. The crite-

ria of modularity and flexibility are arguments for

simple databases over extremely large, complex, all-

encompassing databases.

6.0 CONCLUSION

The design and development of a space database is a

very challenging and rewarding experience. Although
all real-time visual databases are hierarchically-

ordered groups of geometric data, the differences be-

tween familiar terrain databases and space databases

are significant. The organization of a space database is

substantially dependent upon the simulation and

should meet the requirements of specified scenarios.

Hence, the number of and the relationships among

the static and dynamic models are crucial to a success-

ful design. More dynamic models and better image-

generator performance result from a well-organized
database design. The scenario requirements and all of

the database requirements must be taken into account

when the visual system's resources are budgeted so

that the most processing-efficient and visually-
effective database possible is designed.

Furthermore, the potential for improved scene real-

ism is generally greater for a space database because of
the ability of computer-generated imagery as a

medium to depict regular geometric items and be-

cause of the visual quality of photo-derived-texture

applications. Highly efficient and accurate models are
essential not only for visual cueing but for supporting

other visual-system functions such as collision detec-
tion. Finally, well-engineered database source code

and its accompanying documentation provide service

and support for many future project applications.

7.0 ACKNOWLEDGEMENTS

A considerable amount of research was involved in

creating the NASA space databases. The entire devel-

opment team, consisting of NASA and Evans &

Sutherland personnel, participated in these innova-

tive designs and thereby contributed greatly to the

content of this paper. Specifically, Mike Bartholomew,

David C. Christianson (NASA), Mercedes DeLugo,

Ralph Howes, Michael D. Jackson, Daniel Lunt, Janice

Poulson, and James R. Smith (NASA) deserve special

recognition for the information, guidance, and assis-

tance they provided. Curtis G. Booth rendered in-

valuable technical and professional services in the

preparation and organization of this document.

53





N90-20660
/

• . _f. :?,

Tools for 3D Scientific Visualization in Computational Aerodynamics

Gordon Bancroft ,Todd Plessel, and Fergus Merritt (Sterling Software Inc.), Val Watson (NASA Ames)

NASA/Ames
Workstation Applications Office - Code RFW

Mail Stop 258-2, Moffett Field, California 94035
bancroft@ amelia.nas.nasa.gov

(415) 694-4052

ABSTRACT

The purpose of this paper is to describe the tools and
techniques in use at the NASA Ames Research Center
for performing visualization of computational aero-
dynamics, for example visualization of flow fields
from computer simulations of fluid dynamics about
vehicles such as the Space Shuttle.

The hardware used for visualization is a high-per-

formance graphics workstation connected to a super
computer with a high speed channel. At present, the
workstation is a Silicon Graphics IRIS 3130, the su-
percomputer is a CRAY2, and the high speed channel
is a hyperchannel.

The three techniques used for visualization are post-

processing, tracking, and steering. Post-processing
analysis is done after the simulation. Tracking analy-
sis is done during a simulation but is not interactive,
whereas steering analysis involves modifying the
simulation interactively during the simulation. Using
post-processing methods, a flow simulation is exe-
cuted on a supercomputer and, after the simulation is
complete, the results of the simulation are processed
for viewing. This is by far the most commonly used
method for visualization of computational aerody-
namics. The next two methods are much more desir-

able, yet much less common given the current state of
supercomputer and workstation evolution and per-
formance. Both of these are more sophisticated
methods because they involve analysis of the flow
codes as they evolve. Tracking refers to a flow code
producing displays that give a scientist some indica-
tion how his experiment is progressing so he could,
perhaps, change some parameters and then restart it.
Steering refers to actually interacting with the flow
codes during execution by changing flow code pa-
rameters. (Steering methods have been employed for
grid generation pre-processing as well to substan-
tially reduce the time it takes to construct a grid for

input to a flow solver). When the results of the simu-
lation are processed for viewing by distributing the
process between the workstation and the supercom-
puter, it is called distributed processing.

This paper describes the software in use and under
development at NASA Ames Research Center for
performing these types of tasks in computational
aerodynamics. Workstation performance issues,
benchmarking, and high-performance networks for
this purpose are also discussed as well as descriptions
of other hardware for digital video and film
recording.

A new software environment, FAST, is introduced

that is currently being developed at NASA Ames for
implementation on workstations that will be procured
in the latter haft of 1989. This modular software en-

vironment will take advantage of the multiple
processor and large memory configurations and
other features as specified in the NASA RFP for these
workstations and is a natural evolution of the tech-

niques described in this paper.

1. INTRODUCTION

Using computational aerodynamics, scientists are
now able to model complex fluid mechanics problems
using supercomputers and new numerical algorithms.
To gain a better understanding of these complex flow
fields, scientists use high-performance computer
graphics workstations to view and in some cases ani-
mate these simulations. This paper describes this ap-
plication, the hardware, the software, and the tech-
niques used by the Fluid Dynamics Division of the
NASA Ames Research Center.
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2. DESCRIPTION OF THE APPLICATION

The simulations involve visualizing flow field solu-
tions generated on supercomputers. The raw data
from these simulations consists of density, momen-
tum vector, and total energy per unit volume speci-
fied at each grid point in the computational domain. A
typical computational domain may contain 1 million
grid points. This raw data must be converted to a
scene depicting the physics in a manner the scientist
can easily interpret. Color and visual cues (shading,
animation, etc.) are used to demonstrate the physics
of the particular result. PLOT3D, GAS, SURF, RIP
and a new software environment FAST (currently
under development) are visualization tools described
further in this paper.

3. VISUALIZATION REQUIREMENTS

The views of the simulation portrayed by the com-
puter graphic workstations must be 3D because visu-
alization of the inter-related flows of all three dimen-

sions simultaneously is important. The displays must
be dynamic in order for the time-variant features of
the flow fields to be understood. Although the motion
need not be real time, the motions must be rapid
enough to gain a proper understanding of the dy-
namic features of the flow. The flow fields typically
have a large range of scales; therefore, the scientist
must be able to zoom into a region of small scale fea-
tures and zoom back out to view the overall flow

field. Furthermore, the displays should be high defi-
nition to contain adequate detail at all scales. The dis-
plays should simultaneously contain solid body ob-
jects, such as an aircraft (with hidden surfaces re-
moved), and points or lines (such as lines represent-
ing the paths of tracer particles inserted into the flow
field). As the displays evolve in time illustrating the
flow dynamics (e.g., the movement of tracer parti-
cles) the viewing position must be simultaneously

changeable in real time (as the flow is evolving) in
order to maintain the best view or to get a different
perspective. Dynamic change of the viewing position
is one of the best cues for enhancing the 3D aspects of
the display. In addition, new visualization effects such
as ribbon traces, smoke, shading of function mapped
parts, anti-aliasing, variable transparency, volume
visualization and stereo are being requested by the
scientists studying the flow fields.

4. OVERALL APPROACH

At the current time, no workstations costing less than
approximately $100K have been available that can
meet the requirements described above for dynamic
viewing of complex solids embedded in flow fields.
Therefore, the approach has been to obtain worksta-
tions with the highest performance available at the
time of the procurement, and to augment these work-
stations with equipment for recording on video tape
and 16mm film to permit dynamic viewing of com-
plex scenes that could not be viewed dynamically on
the workstations.

The next generation workstation is expected to be
procured in approximately the third quarter of 1989.
The performance of the Silicon Graphics 4D/240
GTX is given in the table below, and it is the ap-
proximate expected performance of the next genera-
tion workstation. These workstations are expected to
meet most of the requirements for dynamic viewing
listed above. A more complete description of the
features expected in the next generation workstation
is given in reference 2. Phong lighting, material
maps, alpha blending, and a windowing system in a
parallel programming environment are additional
features of this next generation workstation.

Benchmark software has been developed at
NASA/Ames to test, among other things, what kind of

Table I: Features of Current and (typical) Next Generation Workstations
Feature IRIS 3130 IRIS 4D/240 GTX

CPU

CPU performance 1 MC 68020 0.1 MFLOPS/16MHz 4 x R3000 (RISC) 16 MFLOPS/25
MHz

FPU performance 1 MC 68881 4 x R3010 (RISC)
128MBRAM 16MB

disk storage 474 MB 9.6 GB

Computations 0.1 MFLOPS 40 MFLOPS
GRAPHICS

Resolution 1024 x 768 1280 x 1024

Image memo D, 24 bitplanes
Z-buffer 12 bits

48 bitplanes (+overla_,_alpha)
24 bits

Pixel rate I r000r000 pixels/sec
3D coordinate transformations 80 K/sec

8vl)OOvO00 pixels/sec

400 K/sec

polygon transformation* 16 K/sec (flat, not z-buffered)

t,ufre_
(*polygons are 400 pixel quadrilaterals)

100 K/sec (Gouraud, lighted, and z-
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graphicsperformancecanbeexpectedfrom these
next generationworkstations(Note: the numbers
quotedin thetableaboveareNOTmeasuredwith
thesebenchmarks,but arepublishednumbersfrom
SiliconGraphicsInc.)Thegraphicscapabilitiesem-
phasizedby thebenchmarkincludecolor,simultane-
ousvectorand polygondisplay,doublebuffering
(ref.7,p.84),hiddensurfaceremoval,smoothshaded
polygonsandcoordinatetransformationrates.The
benchmarksalsotestdisplaylist operation(creating
anobjectin aapplicationprogramanddisplayingit)
andframebufferperformance.Thissoftwarecanbe
obtainedthroughtheauthorsfromNASA/AmesRe-
searchCenter.

5. HARDWARE CONFIGURATION

The hardware configuration is shown in figures 1, 2,
and 3. Figure 1 shows the hardware configuration
for creating and viewing flow field solutions. Figure
2 specifies the hardware for creating video tapes, and
figure 3 specifies the hardware for creating 16mm
film.

The calculations to generate the flow field solutions
are done on the supercomputer. The conversion from
these solutions on 3D grid points to scenes depicting
the physics (e.g. panicle traces about the body) can be
done in three ways. The first way is to transfer the
whole solution file (containing the solution at each
grid point) to the large disk on the workstation and
generate the scene on the workstation. The second
way is to produce graphics files on the supercomputer
(and transfer these graphics files to the workstation).
The software for creating and viewing scenes using
these two methods is described below in the soft-

ware section. The third way is to create the scene
using the supercomputer interactively while viewing

the scene on the workstation. The software for this

method includes tasks that run simultaneously on both
the supercomputer and the workstation. This concept
involves separating the computationally intensive
portion of the processing on the supercomputer from
the graphics on the workstation and having the two
processes communicate over a high speed network.
One scenario involves sending pre-computed display
list (ref. 7 p 348) information to the workstation
using a remote graphics library developed for just
such a purpose (this graphics library allows a
graphics program to be implemented on a
supercomputer). Other scenarios involve more
standard networking schemes, where subroutine
and/or interprocess communication are utilized. The
bottleneck in those types of schemes can often be the
large amount of data that has to be transferred from
one computer to another. Existing software and
techniques being utilized at NASA/Ames Research
Center are described further in references 3, 5 and 6.

The key features of the workstation are its rapid 3D
transformation speed (for changing the viewing posi-
tion), its high definition display, and its rapid display
creation speed. 3D coordinates can be transformed at
a rate of 80,000 coordinates per second. The display
has high spatial resolution (1024 pixels horizontally
by 768 pixels vertically) and high color resolution
(24 color planes giving more than 16 million
simultaneous colors). (The color planes can be di-
vided into two buffers with 12 color planes each to
obtain the double buffering required for most dy-
namical displays. This reduces the number of simul-
taneous colors to 4096.) Displays with a very simple
solid object and thousands of lines or points can be
generated at a rate of more than 10 per second -- a
rate that provides satisfactory motion for under-
standing dynamics. The Space Shuttle illustrated in

LUID DYNAMICS

ALCULATIO

CRAY 2

SUPERCOMPUTER

°_-_ ----_o

I

[
IRIS WORKSTATION

Figure I. Hardware configuration for creating and viewing flow field solutions
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thevideotaperepresentsa maximumdisplaycom-
plexity for studyingdynamicsdirectly with the
workstation,asthetimeto createeachdisplay(frame
forfilm) isapproximately1/2second-- aratethatis
marginalfor viewingdynamicmotion.Forthisdis-
play, the SpaceShuttleis representedby approxi-
mately8000polygons(ref.7p. 87)andthepainter's
algorithmwasusedforhiddensurfaceremoval.

TheworkstationcontainsaZ buffer(ref.7, p. 560)
for hardwareimplementationof hiddensurfacere-
moval. In addition,theGouraudshading(ref. 7,
p.498)calculationsgetanassistfromtheworkstation
hardware.However,manysecondsarerequiredto
createdisplaysof typicalaerodynamicvehiclesif the
Z bufferandGouraudshadingareused.Therefore,
thesedisplaysmustbe recordedon videotapeor
16mmmovietoviewthedynamicssatisfactorily.

Thehardwareusedto recordthedisplaysonvideo
diskis shownin figure2.Thehighdefinitiondisplay
is digitallysampledby a scanconverterto a lower
resolutionRS170aformatthatcanbeencodedbythe
encoderinto the standardsingleNTSC(National
TelevisionStandardsCommittee)signalusedbystan-
dardvideorecordersandplayers.(Thelossin spatial
andcolor resolutionduring this conversionis de-
scribedlaterin thesection"Discussion".) A time
basecorrectormustbeinsertedintothissystemprior
to the1"videorecorderto generatetheprecisionsig-
nal timing requiredfor "broadcast"qualitysignals
(necessaryfor broadcastingover the air). The
AbekasA62videodisk recorderis controlledviaa
standardRS232interface.Aseachframeisdisplayed,
controlinformationtellstheAbekastorecord.It then
storestheframeasdigitalNTSC.Thisprocessoccurs
atstandardvideorates;thatis thedigitalvideosystem
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Figure 2. Hardware configuration for digital video disk recording
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Figure 3. Hardware configuration for 16mm film recording

has the capability to record analog NTSC at real-time
rates so the time required to record a computer
workstation frame is limited by the time it takes to
render it. The workstation then continues on with the

next frame, and repeats the process until the anima-
tion is complete. The Abekas uses Winchester disk
technology (1.3 gigabytes storing 100 seconds of
video), allowing stored video to be edited (using the
A52 special effects) or the disks to be re-recorded.
There are no generation losses within the system due
to the digital formatting.

The hardware for recording the displays on 16mm
film is shown in figure 3. The Dunn Camera is con-
trolled from the workstation using an RS232 hard-
ware connection and the GAS software described

later in this paper.

6. SOFTWARE

The three techniques used for visualization are post-
processing, tracking, and steering. Using post-pro-
cessing methods, a flow simulation is executed on a
supercomputer and, after the simulation is complete,
the results of the simulation are processed for view-
ing. This technique is by far the most common for vi-
sualization of computational aerodynamics, given
existing computing resources. The following are ex-
amples of post-processing software packages in use at
the NASA Ames Research Center:

PLOT3D accepts as input the flow field solutions
from the supercomputer and creates as output a vari-
ety of displays that can be viewed dynamically with
the workstations (or statically from other graphical
display devices). The software makes extensive use
of color and 3D cues (such as shading and perspec-
tive: ref. 7, p. 269). A very popular display is path
lines of particles released at selected points inside the

flow field. An example of particle paths in the flow
field is shown in figure 4. A second example of dis-
plays from PLOT3D is color mapping on a vehicle
surface representing the magnitude of some scalar
property on the surface, such as pressure. A third
example is a shock surface within the flow field (or
some other surface of constant scalar value) repre-
sented as a partially transparent surface so the vehicle
creating the shock can be seen through the shock.
PLOT3D software can be run on the workstations,

the Cray supercomputers, and on a VAX 11/780
minicomputer.

SURF(Surface Modeller) allows scientists to input
grid and solution files and interactively build a 3D
model consisting of wireframe, shaded, and function
mapped parts. These parts can be interactively
viewed, edited, and output to ARCGRAPH files
which can then be loaded into GAS and then ani-

mated. SURF has a mouse driven interface (similar to
GAS). Gouraud shaded parts can have their color and
specular highlighting adjusted interactively. Shaded
parts are created based on user specified lightsources
(up to 20), a viewpoint, and an ambient light level.
The function mapped parts can also have their color
spectrum adjusted interactively. Legends can be cre-
ated to show the correlation of color and normalized

function values. Also, function mapped parts can be
"clipped" so that they only show areas within a speci-
fied range of function values (e.g. normalized pres-
sure between 1 and 2). SURF computes the following
functions: pressure, density, temperature, Mach
Number, and custom (user defined) functions.

GAS(Graphical Animation System) permits the sci-
entist to interactively and dynamically view the 3D
displays created by PLOT3D (or several other
graphical packages) while simultaneously changing
the viewing position within the 3D space. In addition,
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Figure 4. Example of figure created with PLOT3D.
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Figure 5. Example of figure created with SURF.
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Figure 6. Example of figure created with GAS.

Figure 7. Example of figure created with RIP.
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it permits the scientist to generate an animation se-
quence with smooth 3D transitions between a series of
specified positions. Both the animation speed and the
number of "tweening" steps (automatically added to
give smooth transition between specified positions)
are under user control. Titles can be inserted, and the
resulting "movie" can automatically be recorded by
the video equipment or the 16mm film recorder
which are under control of the GAS software. This
software is device specific and runs only on a Silicon
Graphics IRIS Workstation. It was written in the C
programming language under the UNIX operating
system.

FAST(Flow Analysis Software Toolkit) is a new
proposed standard fluid-dynamics graphics environ-
ment. The purpose of FAST is to provide the scientist
with a single software environment for handling
many graphics needs (some functionality exists in the
programs described above) in a way that is quick,
powerful, and easy to use. The programs above were
designed and built for the current Silicon Graphics
IRIS 3130 workstation, whereas the FAST environ-
ment is being designed for the capabilities of the next
generation workstation (see Table 1.). The new capa-
bilities of these machines warrant a new approach to
building graphics tools. The goal is to allow a scientist
to quickly and easily perform fluid dynamics scien-
tific visualization from this environment. Initial

software features include (1) a standardized user in-
terface, (2) data sharing, communication and mem-
ory management between modules, (3) high quality
rendering and advanced animating capabilities, (4)
new ways for viewing and interpreting fluid dynam-
ics. The five initial modules are (1) the main FAST
module to load and unload the other modules and

manage data structures, (2) The MODELLER mod-
ule to read grid and solution data and create models,
(3) The FLOW TRACER module for illustrating the
flow field in a variety of ways (tracers, ribbons,
smoke), (4) The TITLER module for titling and la-
belling, and (5) The ANIMATOR for advanced ani-
mation and recording.

RIP(Real-time Interactive Particle-Tracer) is an ex-
ample of a distributed graphics tool and actually con-
sists of two programs that communicate over a high-
speed network. One program computes the flow
traces from raw data on a supercomputer and the
other program renders these traces for interactive
viewing on a workstation. Particle tracing is then in-
teractive, where a scientist selects a trace or rake of
traces for display and the traces are computed and
then drawn in most cases almost instantaneously,
much like a smoke wand in a wind tunnel.

There are other codes in use at NASA Ames that em-

ploy tracking and steering methods, although these
codes are typically in more prototype use than part of
day-to-day simulation efforts. Versions of ARC2D
(Ames Research Center 2-d flow solver), a code in
use at NASA Ames, exist that "track' the progress of a
simulation. Simple examples of 'steering' a flow code
exist as part of the interactive grid generation pro-
gram IZ (Interactive Zoner). In this example of
'steering', you can generate a grid and then run a flow
solver on it using the distributed graphics techniques
discussed earlier. This example is only 2-d because
workstations have not had the resources (until re-
cently) to allow 'steering' a 3-dimensional flow
solver.

7. DISCUSSION

Of the three visualization methods discussed in this

paper (post-processing, tracking, and steering), post-
processing is by far the most common. Current su-
percomputer and workstation performance make this
the most practical method for viewing solutions of
computational aerodynamic solutions. Probably 90%
of all simulation is performed in this manner, with
the remaining 10% made up of scientists using track-
ing codes, and, to an even lesser extent, scientists us-
ing steering codes.

Post-processing techniques include (1) dynamic, in-
teractive viewing on the workstation, (2) recording
and playback on video disk and then to tape, and (3)
recording and playback on 16-mm film. These tech-
niques have greatly improved the ability of scientists
at NASA Ames to conduct fluid dynamics research,
although these techniques necessarily mean a loss of
interactivity, take a long time to record, and, for
video, mean a loss of spatial and color resolution.

With direct viewing on the workstation, the capability
to interactively manipulate the viewing position
and the animation sequence was found to be very ef-
fective in providing a quicker and more complete un-
derstanding of the flow field solutions. This capabil-
ity is lost if the displays are so complex that they must
be recorded for playback. A solution for this prob-
lem is to increase the performance of the workstation.
As mentioned earlier, the display creation speeds of
workstations are projected to increase an order of
magnitude over the next year. This will permit many
complex displays that now must be recorded for
satisfactory motion analysis to be viewed directly on
these newer workstations. Nevertheless, there will

still be displays that are too complex to view with ad-
equate rates of motion on the new workstations;
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recordingwill still berequiredfor thesedisplays.(In
addition,recordingsarerequiredfor grouppresen-
tations.) Therefore,it is importantto improvethe
recordingtechniquesalso.

Recordingon theAbekasvideodiskor Dunnfilm
recorderwith thehardwareshownin figures2 and3
requiresa muchlongertimethansimpleviewingon
theworkstation-- atypicalrecordingtimeis 1/2to 1
hourforeveryoneminuteof playbacktime(basedon
30 framespersecondvideoplaybackand24 frames
persecondfilm playback).Thefilm mediumtakes
longerduetothenatureof therecordingprocess.The
Dunnfilm recordingsystemrequirescyclingof red,
green,andbluefilters for eachframe(orexposure).
TheAbekassystemrecordseachframeessentiallyin-
stantaneously,sothelengthof recordingtimeis de-
terminedby thetimeit takesto rendereachframe,
whichisdeterminedbytherenderingtechniquesbe-
ingusedfor thesimulation(1secto2minutes).

Recordingonvideodiskalsocausesalossinpicture
quality (a lossin picturedefinitionandshiftingin
colors). The initial spatialresolutionmustbecut
nearlyinhalf (downto 512x 512)fortheconversion
to RS170aRGBformat,andthefurtherencodingto
thesinglecompositevideosignal(NTSC)causesan-
other substantialreduction in quality. Analog
recordersthatrewindandpre-rollalsocausesome
lossin quality. Thedigitalvideosystemmentioned
aboveprovidesapartialsolutionto thelossinpicture
quality. Thereis nolossof resolutionor shiftingof
colorsin theeditingbecausethepicturesarestored
digitally.Thelossof qualityduringrecordingisalso
reducedby usingcontinuousrecordingratherthana
frameatatimeandbyusingthelarger1"tapeformat
ratherthanthe3/4"tapeformatusedin olderanalog
recordingsystems.Thecapabilityto recordindivid-
ual "fields"of videois alsoanimportantfeatureof
the digital process.Animation sequencescanbe
separatedby fields (insteadof by full framesof
video).Theeffectonplaybackis very smoothmo-
tion,astheeyecannotdetectordistinguishbetween
thesefields.This techniqueis borrowedfromcom-
mercial televisioncomputergraphicsapplications
whereit isusedoften.

Recordingonvideodiskandtapecouldbesubstan-
tially improvedwith theadditionof real-timedigital
videooutputfrom a workstationframebuffer.Cer-
taindigital videocomponentmanufacturersareal-
readystandardizingon theD2 (Sony,Ampex)com-
posite digital video format and, althoughmany
workstationmanufacturershavediscussedsuchan
option,theauthorsarenotawareof it beingavailable
atthetimeof thiswriting.Notonlywouldthisoption

eliminatetheneedfor muchof theoutboardequip-
mentnecessaryfor videorecording,it couldpoten-
tially improvethevideoqualityby eliminatingnu-
mericalsamplingerrorgoingfrom digitalto analog
andbacktodigitalagain.

Recordingonfilm requiresalongtimeprimarilybe-
causefilm processingatNASA/Amesis doneoff-site.
Thisprocessingtimecouldbe reducedfromdaysto
hoursif a film processorwereplacedon-site.

Theneedfor theserecordingtechniquesarisesfrom
the currentcapacityand performancelimitations
touchedonearlierin thispaperandsummarizedin
table1.

Whiletherewill alwaysbeademandforpresentation
videos,partiallyreducingthedependenceon these
recordingtechniqueswouldrequireultimateperfor-
mancein acomputergraphicsworkstation.A spatial
resolutionof 1280x 1024requires100,000poly-
gons/secupdatedat 10-12frames/secfor baseline
performance(with hiddensurfacesremoved,anti-
aliasingand interactive,advancedlighting mod-
els).Workstationsthatapproachthislevelof perfor-
mancearediscussedin this paper.Otherpossible
configurationsNOTdiscussedin thispaperinclude
fastframebufferconfigurationsutilizingaveryhigh
speednetworkinterfaceto a supercomputer(100
mbyte/sec)oranRGBdigitalvideosystem(although
thiswouldNOTbeinteractive).

As furtheradvancesaremadein supercomputing,
parallel architectures,networksand workstation
graphicalperformance,theauthorspredictdevelop-
ment of more and more softwareenvironments
wheretrackingandsteeringtechniquesareemployed.
At thetimeof this writingstate-of-the-artresources
allow for only minimalexamplesof thesetypesof
scientificvisualizationof computationalaerodynam-
ics(seeTable1).

8. CONCLUSIONS

The high resolution, high performance 3D graphical
workstation combined with specially developed dis-
play and animation software has provided the scien-
tists conducting fluid flow simulations with a good
tool for analyzing flow field solutions obtained from
supercomputers. A video tape recorder or 16mm
film recorder, and the controlling animation soft-
ware, are needed in addition to the workstation for

very complex displays that cannot be created rapidly
enough with at this point in time to yield satisfactory
dynamics on the workstation alone.
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ABSTRACT

We describe our experience using graphics
tools and utilities while building an

application, AUTOPS, that uses a graphical
Macintosh (TM)-like interface for the input

and display of data, and animation graphics to

enhance the presentation of results of
autonomous space vehicle operations
simulations. AUTOPS is a test bed for

evaluating decisions for intelligent control
systems for autonomous vehicles. Decisions

made by an intelligent control system, e.g., a
revised mission plan, might be displayed to
the user in textual format or he can witness
the effects of those decisions via "out of the

window" graphics animations. Although a
textual description conveys essentials, a

graphics animation conveys the replanning
results in a more convincing way. Similarily,
iconic and menu-driven screen interfaces

provide the user with more meaningful

options and displays. We present our
experiences with the SunView and TAE Plus
graphics tools that we used for interface

design, and the Johnson Space Center

Interactive Graphics Laboratory animation
graphics tools that we used for generating our

"out of the window" graphics.

INTRODUCTION

For several years, much effort has gone into
the development and application of enabling
and enhancing technologies for support of

space operations. Many new technologies and
methods, such as artificial intelligence and

expert systems, have been applied to flight

Daniel C. Bochsler

LinCom Corporation - Houston Operations
Houston, Texas 77058

design software, user interface problems,
ground and flight crew training, ground based
mission control operations, robotic operations,

flight systems management, etc. [1] The
AUTOPS (autonomous operations) test bed

integrates many of these technologies into a

single framework to develop effective
operations management, an element of mission

success that is equal in importance to reliable
hardware and software. [21

AUTOPS is an evolving tool that has thus far

been developed to the point of a feasibility
demonstration that makes considerable use of

animated graphics and screen interaction
graphics. The animations are used for

demonstrating proximity operations autonomy
in operation planning, mission monitoring, and

fault management. Screen graphics

additionally assist in demonstrating vehicle

monitoring and health maintenance expert
systems and rendezvous planning activities.

Because these items form uniquely
informative means to convey system behavior
to an analyst, they form an important feature
of AUTOPS.

Although the importance of good graphics is
unquestionable, their development has

previously represented a significant
commitment of time and effort. The

availability of graphics tools has significantly
changed this level of commitment. In this

paper, we discuss our recent experience with

using some of these tools.

AUTOPS CONCEPT

Figure 1 illustrates the architecture of
AUTOPS. The test bed consists of a collection
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of objectsdedicatedto specificactivities:a test
bed controller and vehicles that contain
subobjectssuch as intelligent vehicle control
systems, orbital and hardware simulations,
and data managementcapabilities. The
graphic capabilities are isolated from the
computationalcapabilitiesin the graphicsand
operator interface objects controlled by the
test bed controller. This architecturepermits
the reuseof code developedby othersor the
use of tools developedby others to produce
the desired interfaces. Intelligent control is
accomplished through cooperating expert
systems that perform mission direction,
mission monitoring, operationsplanning, and
systemhealth monitoringand fault recovery.

Currently, "vehicles" use softwaresimulation
as the means for providing orbital motion
parametersand consistentsensorresponseto
the orbital environment and vehicle
subsystemoperation. It is our intent to
provide the capability to integrate hardware
into the test bed to provide someof these
data. For example,if it weredesirableto test
the ability of a vision sensorfor use in close
proximity operations, a television picture
could be generated using the animated
graphicsand fed back to the vision hardware
for the appropriate vehicle. A more
immediateexample is to use a fuzzy logic
hardwarechip to provide engine firings in
place of the fuzzy logic controller software
usedin the feasibility demonstration.

Finally, other featuresof AUTOPSincludethe
executionof the operationin real time and
integration of currently available programs,
especially simulation software. Real-time
operation means here that the simulation
computationswill occuroften enoughto reflect
actual behavior of an autonomous space
vehicleand that time spentby expertsystems
in arriving at a decision for action will be
taken into account.

SCREENINTERFACES

Our feasibility demonstrationrequired three
screen interface designs: a main Operator
Interface (OI), an interface to the electrical
power systemexpert system(EPSYS),and an
interface to the propulsion system expert
system (PROPSYS).These interfaces were
constructedovera periodof time in which we

were significantlyincreasingour graphicstool
capability. The first to be built, the EPSYS
interface,was createdwith SunViewwhich is
systemsoftwarefor our SUN network.The OI
andPROPSYSinterfaceswerecreatedwith TAE
Plus softwareobtainedfrom GoddardSpace
Flight Center.

EPSYSis a prototypediagnosticexpertsystem
for monitoringthe electrical power systemof
an autonomousshuttle-likespacevehicle. Its
functionis to detectand explainanomaliesand
generateplans to recoverfrom systemfaults.
EPSYS supportsa window- and menu-based
user interface. The user-interfaceis composed
of a basewindow that is subdividedamonga
group of graphicand text subwindows(Figure
2). Each graphic subwindowrepresentsa
control panel for a physical subsystem. The
control panels are composedof parameter
headingsand a matrix of associatedstatus
lights and trend symbols. A commandbutton
and hierarchicalmenu systemwere designed
to allow the user to easily communicatewith
the expertsystem. The final componentof the
interfaceis a scrollabletext subwindow. The
function of this window is to organizeand
display the textual representationof the high-
level interactionsand conclusionswithin the
expert system.

Our choicesfor the developmentof the EPSYS
interface were SunView and X. We chose
SunViewlargelybecausewe had accessto the
source code of a SunView-basedinterface
which supportedmany of the samefunctional
requirementsthat EPSYS possessed. Also,
SunView is well-documented. At this time,
our in-houseversion of X had severalbugs
and lacked complete and accurate
documentation. In addition, the
documentation we possessedsupplied few
examples.Also, our versionof TAE Plus,anX
code generator,was an early releaseand did
not supportmanyof the functionswe needed
to implement. The EPSYS interface was
completed in three weeks by two
programmers,including learning the SunView
system.

The secondinterfacewe built was for the OI
for inputting orbital parametersand showing
calculationalresults. We electedto useTAE
Plusfor this task. TAE Plusallowsthe userto
build a graphicsinterface with a Macintosh
(TM)-like feel by using a graphicsworkbench
tool with a mouse. It adds a layer of
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programmingover standardX code,such that
the developeris requiredto havelittle, if any,
X programming knowledge. Once the
developerhas the interface screenor panels
designed, the workbenchtool can generate
code that implements it. Currently, the
workbenchwill generatecode in the C and
Ada languageswith Fortranand C++ generators
under development.

Approximately one week was spent in
learning how to use TAE Plus and how to
integrate its generated code into an
application. The original OI design was
completed and implementedin tour days by
one programmer. An additional week was
spent in editing the interface by "tweaking"
the placementof items in a panel. Figure 3
presentsthe prototypeOI mastercontrol panel
and vehiclestatesoutputpanels. The graphics
workspace is the only panel that requires
direct X programming.

Figure 4 shows an overlayed Initialization
panel where the user can select one of ten
rendezvouscases and either accept default
data or modify any of the orbital elements.
This panelrequiredthe mosttime to complete,
as all work was performedon a SUN 3/50.
TAE Pluswasdesignedto run on a SUN3/60.
A twenty-four characterlimitation on display
text length required that the titles on the
rendezvouscase selectionbuttonsbe created
in halvesand draggedto their locationson the
panel.

The PropulsionExpert System(PROPSYS)is
another prototype for a fault management
system. PROPSYSwill be a part of a
distributed network of cooperating expert
systemsforming the SystemMonitor for an
autonomousvehicle. It is a rule-basedsystem
written in CLIPS. Its user interface was
developedusing TAE Plus and X. The user
interfaceis composedof a main control panel
which is used to generatesubsystemfaults
(Figure 5). The subsystemchosenbrings up
other panelswith menusto enter parameters
necessaryfor fault generation. After fault

generation is complete, display panels that are

appropriate for monitoring the subsystem
during fault analysis and recovery appear
(Figure 6). A standard X window displays text

provided by the expert system during its
operation. The text provides information on

high-level interactions and conclusions made

by the expert system.

The PROPSYS interface was completed in about

four weeks by two programmers. This

included learning TAE Plus and integrating its

generated code with the application code.
Access to existing TAE Plus code provided
invaluable assistance and reduced our

development time.

ANIMATION GRAPHICS EXPERIENCE

The integration of the AUTOPS Testbed

Prototype with an existing graphics package
was a simple, straight-forward procedure. In

order to connect the prototype to the graphics,
the AUTOPS Testbed Prototype software was
loaded onto a Sun workstation located in the

NASA Interactive Graphics Lab. This Sun

contained Raster Technologies' graphics boards
to provide a graphics engine and was

connected to a high-resolution color monitor.

The modification of code in order that AUTOPS

could be integrated with the graphics was also

a minor procedure that consisted of

customizing three routines and a data file. The
three routines and the data file were copied

from the graphics package into the AUTOPS
simulation code. They were then modified to

fit our requirements. This consisted of picking
the vehicle models that we were using, in this
case, models of the Shuttle Orbiter and the

Orbital Maneuvering Vehicle, choosing
information such as eye-point position,

background models for the stars and the Earth,
lighting, and size of the vehicle models. After

the modifications were completed, the
resulting code was compiled and linked into

the simulation code. The Prototype was then
executed in the same way that it was before

the graphics was integrated into it. The
procedure for integrating the AUTOPS

prototype with the graphics required two
programmers for two days.

Figure 7 shows one of the runs made with this

system. The asterisks show positions of the
orbiter at constant time intervals. Speed is

thus indicated by the separation of successive
indicators. This example illustrates the

triggering of a replan by an expert system
planner in response to an anomaly, in this
case, a loss of general purpose computer

redundancy. Flight rules specify that the
vehicle shall back straight out to a 200 foot
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range in this event. The graphicsemphasize
and record this behavior.

CONCLUSION

We have found that graphicstools providea
practicalsolution to quickly building excellent
interfaces, that the tools are rapidly
improving, and that the time for changesis
growing sufficiently short that timely
modificationsof the interfacesto accomodate
user preferencesis now practical. Also,
animatedgraphics can be easily adaptedto
enhance computational results without
extensivemodification of an application that
doesnot supportsuchcapacity.
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Figure 4 AUTOPS Initialization Interface

Figure 5 PROPSYS Main Control Parcel
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INTRODUCTION

The Mission Control Center (MCC), located at the

Johnson Space Center near Houston, Texas, is the
primary point of control and monitoring for National
Space Transportation System (NSTS) flight activities.
NSTS flight managers monitor and command spacecraft
from one of two Flight Control Rooms (FCR). Each

FCR is equipped with five large screen displays for
group dissemination of spacecraft system status and
vehicle position relative to Earth geography. The

primary or center screen display is ten feet in height
and twenty feet in width. The secondary or side screens
are seven and one-half feet high and ten feet wide. The
center screen projection system is exhibiting high
maintenance costs and is considered to be in wear-out

phase.

The replacement of the large center screen displays at
the MCC is complicated by the unique requirements of
the Flight Controller user. These requirements demand
a very high performance, multiple color projection
system capable of the display of high resolution text,
graphics and images produced in near real time. This

paper describes the current system to be replaced, the
replacement system requirements, the efforts necessary
to procure the major element of this system (the
projector) for the government, and how the new
capabilities are to be integrated into the existing MCC

operational configuration.

OVERVIEW OF EXISTING SYSTEM

The current center screen projection system represents
the state-of-the-practice for electro-optical systems in
the early half of the 1960's. This rear screen based

projection system is comprised of three major
subsystems; the projector, mirror and screen, and the
driving electronics.

The projector

Manufactured by LTV Corporation, the projector
subsystem utilizes seven individual xenon lamp/slide
assemblies, mounted on a common structure, to form

composite images on the screen. (See figure 1.) Each
assembly performs a specific function and by way of
color filtering, each can provide a specific color. Basic
slides are constructed of glass, with a metal film coating,
a few microns thick, to provide opaqueness, and are
mounted to a metal frame.

Five of the seven projectors are equipped with carousels

to provide a supply and repository for new and used
slides respectively. Four of those five projectors, referred

to as plotters, are equipped with diamond tipped scribes
driven from X/Y servos, which scrape off the metal
coating, allowing light to pass through the slide. The
two projectors without carousels, spotters, utilize slides

prepared with artwork, whose subject (i.e., shuttle
outline) may be positioned within the frame of the image
by X/Y servos similar to the scribing mechanism. The
remaining carousel projector, background, displays a
static background from prepared artwork (i.e., map).
To prevent damage to the slides from the heat produced
by the close proximity of the xenon lamps to the slides,
compressed air must be forced onto the slide surface.
When simultaneously illuminated, color modified

through filters, and modulated by art work or scribed
slides, the light from these individual projector
assemblies is integrated on the screen to develop the
familiar "world map" image.

The Mirror and Screen

Due to a floor space constraint (see figure 2), and long
throw distance requirement of the projector, the optical

path to the center screen must be folded. This is
accomplished through the utilization of a large front
surface reflection system. This system consists of two
five by six and one half foot pieces of front surface
aluminum coating number 749 glass. Glass mounting
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Figure 1. Existing LTV/Ford Aerospace center screen projector.

structures allow for tilt and azimuth adjustment. The
support structure for the glass and glass mounts

elevates the entire assembly to the required height of
eleven feet, centerline.

The viewing screen is a single ten foot, one inch, by
twenty foot, one inch, by 0.375-inch sheet of coated
glass. The rear-projection coating faces the viewers.

Driving Electronics

Ford Aerospace specially designed and built the
electronics to command the projector because of the

unique nature of the projector interfacing requirement,
for example; when to change slides or color. Nine

standard equipment racks, six feet in height, house the
interface electronics and xenon lamp power supplies.
Commands are received from the mission operations
mainframe computers and translated into analog

voltages for the scribing pen or slide positioning servos.
The logic is at a five inch by five inch card level. Each
card performs a logic function, i.e., NAND gate. Physical
fatigue is reducing the reliability and availability of
this interface. Due to a sagging card cage support

structure, the logic cards become unseated from their
edge connectors and even with redundant channels,
the subsystem has a high failure rate.

NEW SYSTEM REQUIREMENTS

Despite the complexities and short comings discussed
to this point, the current system produces extremely

sharp, bright, functional displays to which the user
has become accustomed. Defining realistic and
achievable requirements for a replacement system to
match the current system's capabilities has been a
difficult task. As will be discussed in a subsequent
section, several iterations to generate requirements,

release Request for Proposals (RFP), and evaluation of
submitted proposals were necessary to finally achieve
a successful procurement. The requirements delineated
below correspond to the projector to be manufactured
under the current subcontract. In most major
procurements for the government, a committee is

usually assembled to define system requirements. This
project was not unique in that regard.

Display Characteristics

The display shall fill the entire ten by twenty foot screen
surface from a maximum throw distance of not more

than 35 feet. Provide an average illumination of 2500
lumens, flat modulated white light, 30 to 1 contrast
ratio, uniform across the entire screen within ±25% as
measured from the rear of the screen with a standard
photometer.
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Figure 2. FCR projection room layout.

The projector shall be compatible with the analog RGB
video output of several sources, such as; 'non-interlaced

high resolution engineering workstations, the current
945 line scan rate repeat field monochrome video system
and standard RS-170A color video. The projector shall
have a "sense and select" automatic scan rate lock

capability for a predetermined range of the possible
video input scan rates designated for its use. The

projector shall also be capable of accepting an extremely
high resolution input (1800x900x60) non-interlaced,
wide aspect signal for use as a center screen
replacement projector.

The projector shall exhibit geometric distortion less than
or equal to 0.5 percent of the screen height in a circle

with origin at the center of the screen, with a diameter
equal to the screen height, and less than 1 percent
outside of that circle. Primary color registration shall

be within 0.1 percent of screen height.

Commonality

To provide for economies of scale in initial procurement
and in logistical support considerations, commonality
is an important requirement. It is planned that, not
only the projector, but the workstation/graphics
processor driving the projector shall be common
elements in many other manned-mission support

disciplines. In the FCR two additional projectors are
planned to satisfy the secondary or side screen
replacement requirements. There are several new

manned-spaceflight control facilities in the initial stages
of development. These centers are expected to require

large screen displays:
• Space Station Freedom Control Center
• Orbital Maneuvering Vehicle Control

• Crew Emergency Return Vehicle Control.

Additionally, space mission simulators require high

light output, extremely high resolution projectors for
simulation of ascent, on-orbit, and entry activities. The
Shuttle Mission Training Facility is currently

undergoing an upgrade and plans are being drawn up
for the Space Station Freedom Training Facility. In
all, over twenty projection systems may be required in
the next two to five year period.

PROCUREMENT OVERVIEW

The requirements committee initially defined
requirements for a projector to satisfy a center screen

replacement in 1984. It was learned, after an RFP cycle
and some fact finding, that such a projector was not
available commercially. Subsequently, the Government
determined that procurement of side screen replacement

projectors could be supported by commercially available
products. The requirements were modified to reflect
the needs of the side screen replacement systems. In
essence, these requirements are to display information
similar to that available on a FCR nineteen inch

engineering workstation CRT. The RFP was released
in late 1985 and fact finding commenced in early 1986.
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Fact finding consisted of visits to various supplier's
manufacturing facilities, and demonstrations in the
FCR itself. Six qualified bidders who met the

specifications as written were selected. Ford Aerospace
recommended, however, that none of the respondents
offered a product satisfactory to the users requirements
and that the procurement effort should be terminated.

Considerable experience had been amassed in the
previous procurement attempts. An understanding of
the large screen display state-of-the-practice had been
acquired by the government and Ford Aerospace. Also,
the MCC user community was educated to the fact

that large screen display devices had significant display
restrictions over CRTs and that the best quality display
available would be expensive to acquire. Considering
all lessons learned, a specification was developed that,
if met, would satisfy a wide range of requirements (see

above). Sufficient funding had been allocated to allow
for the development of augmentations, modifications
or upgrades to commercial products, if necessary, to
satisfy the known requirements. In late 1986, an RFP

was released defining such a projector. Six respondents
submitted proposals of which two were determined to
be in a competitive range. The six respondents were

categorized as follows; two were direct laser projection
products; two were Oil-film based projectors; and, two
were based upon the polarizing light characteristics of
crystals. The demonstration and fact finding procedures
clearly identified the best proposal and candidate

projector. The candidate selected was the Hughes
Aircraft Company, Ground Systems Group/Fullerton,
HDP-6000B projector, a liquid crystal based product.

size prior to commencement of production.

Hughes modified a "brassboard" prototype projector to
satisfy the POC requirements. The standard Arc lamp

reflector was modified to produce twice the light output.
The Xenon lamp size was increased to 2500 watts from

1000 watts. The scan circuitry was modified to accept
video signals from the graphics processor selected for
use by Ford Aerospace during the POC.

Ford Aerospace acquired a Sun 3/160 workstation to

serve as the workstation host for the graphics processor
and application software necessary to provide and
control video signals to the POC projector. The
application software had been under development at
Ford Aerospace for approximately a year and consisted
of nearly twenty thousand lines of Unix based C

language code. The graphics processor, used for POC,
was a Parallax 1280 series VME board set with RS-
170A video overlay capability. The Parallax was chosen

for its RGB video output timing flexibility and TV
overlay capabilities. By using the flexible video output
timing characteristics of the Parallax the development
team was able to match the maximum possible scan

Ford Aerospace is currently engaged with Hughes in
negotiations to provide enhancements (see 6.0) to the

original HDP-6000B projector. The two projectors
currently subcontracted are scheduled to be delivered
to Ford Aerospace in July of 1990. Production of the
two HDP-6000B units will commence in February of
1989 at the Hughes Industrial Products Division in
Carlsbad, CA.

PROOF-OF-CONCEPT

Given the level of funding required to purchase two
large screen display projectors of this unique nature,
NASA development managers desired a "check point"
or Proof-of-Concept (POC) demonstration to ascertain
if the projector could perform the assigned task
adequately. Ford Aerospace included in the subcontract

to Hughes the provisions for such a demonstration at
the MCC FCR facility. Previous demonstrations, as part
of procurement fact finding, yielded comments from
the MCC user community expressing concern about
insufficient illumination and display size. The

subcontract included a clause that provides a POC
demonstration of the specified brightness and display

78

Figure 3. Proof-of-Concept Projector, lift table
and Sun 3/160 workstation.
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rate available from the POC projector, thereby,
providing the optimum quality obtainable from the POC
projector's electronics package reducing the overall cost

of the subcontract to the government. It would have
been prohibitively expensive and self defeating to
produce a full production projector for POC. A series of

four integration tests was preformed over a six month
period at Hughes to define the POC projector's
operational scan limitations and to integrate, test and
align the POC system.

Hughes personnel installed the POC projector in the
FCR projection room on a hydraulic lift table (see figue
3) provided by Ford Aerospace specifically for the POC.
The lift table allowed placement of the POC projector's

output optics at the center line of the screen. The
workstation was configured so that the user interface
hardware was on the user side of the screen and the

workstation CPU/Graphics Processor combination was
located adjacent to the projector. After an extensive

checkout, alignment and test cycle, a performance
verification test was preformed to contractually verify
POC performance. The modulated light output,
measured from the rear of the screen by a photometer,
at nine locations adjacent and perpendicular to the
screen surface, was over 2800 lumens. It was also

determined that the projector, when located an
additional two feet further from the screen, would

provide a full ten by twenty screen display. (POC size
was set at ten by eighteen feet due to the existing
system's mirror support structure placement.)

The POC was considered to be successful by a majority
of the MCC user community, NASA development

managers, and the Ford Aerospace development team.

(See figure 4.) A questionnaire was distributed during
the user demonstration segment of the POC which

asked for the user's opinion of the suitability of the
demonstrated system as a replacement for the existing
system. Over eighty percent of respondents to the

questionnaire responded favorably. Consequently,
NASA has directed Ford Aerospace to continue in our

efforts to replace the center screen systems and
investigate the commonality candidates.

ENHANCEMENTS

From the user comments during POC and NASA
development manager's inputs, it was determined that
further enhancements should be incorporated into the

HDP-6000B production projectors. A brief description
of the proposed enhancements follows.

Scan Circuits to 68 KHz

This enhancement provides for a higher level of
commonality between various projector requirements,
ease of manufacture, and logistical sparing. With the
enhanced version of scan electronics, virtually any

engineering class workstation, or Advanced Television
source may be connected to the HDP-6000B inputs.
This electronics package shall also be used in another

Hughes program.
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Figure 4. POC demonstration display of the "World Map."
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Video Bandwidth to 110 MHz

Given a resolution requirement for the center screen of
1800x900x60 non-interlaced, it was necessary to
increase the video bandwidth (sharpen pixel rise/fall
times) in the production version of the HDP-6000B.

FUTURE PLANS

The existing subcontract shall be modified to include

the enhancements discussed in the previous paragraphs.
Hughes shall initiate production of the two HDP-6000B
projectors shortly thereafter. As the actual fabrication

of the two production HDP-6000B projectors is in
progress, Ford Aerospace shall be monitoring that effort,
in addition to developing the telemetry/trajectory data
to video signal processing and generation software and
equipment.

Workstation

The' final host platform for the world map generation

application has yet to be identified. Once the projector
input requirements are set, a procurement cycle will

be initiated for the graphics processor to satisfy the
high resolution display requirements and match the
video signal timing requirements of the projector. As
the candidates for the graphics processor are identified,
analysis to identify the workstation to serve as host to

the graphics processor and application software will
commence. The processing speed of the individual
workstation's flavor of Unix, native software
development environment, internal bus structure and
local area network commonality are prime
considerations in the analysis process.

Software

As was stated previously, the application software

development task had been proceeding in parallel to
the hardware identification, procurement and

development activities. In addition to generating and
updating a world tracking map from data delivered to

the application from spacecraft telemetry, the
application must generate near real time graphical
displays that convey spacecraft parameters during
ascent and entry phases of the flight. At POC, a stable
prototype of the application was available for use in

the demonstration of the POC projector. The application
was initially developed on a Masscomp 5600 class
workstation. The Parallax, which is a VME based

product, (Masscomp 5600s are Multibus based) required
a port of the application software to the VME based

Sun 3/160. Approximately 95% of the code transported
transparently, with only the graphics specific calls in
need of a rewrite. The original application uses the
native graphics calls specific to the Masscomp
workstation graphics processor and, in the case of the

Sun/Parallax, uses the Parallax native graphics
instruction set.

POC provided a useful degree and quantity of feedback
from the user community that simply could not be

obtained from demonstrations of the application on a
19 inch CRT. Comments concerning character size were
the most prevalent. Ford Aerospace intends to provide
to NASA a human factors analysis on color and

character usage for the large screen displays prior to
the official final release of the application software.

Installation

Upon completion of fabrication, checkout and alignment
of the projectors will be accomplished at the Hughes
facilities prior to shipment. Upon receipt and receiving

inspection by :Ford Aerospace, the projectors will then
be shipped to the Johnson Space Center, Building 30,
where they will be installed in the two FCRs. Each
installation will consist of the projector, new screen,

projector lift table, workstation/graphics processor,
application software, maintenance monitors,
maintenance documentation and the removal and

subsequent surplus of the existing system. When the
installation is complete, a final Acceptance Test will be

preformed verifying the performance of each projector
to specifications.

A trial period of non critical support may be required
to acquaint the flight control personnel with the new

system's capabilities and idiosyncrasies prior to "the
removal of the current system. This concept is facilitated
by the projector/lift table configuration which allows
the HDP-6000B to be raised/lowered, in/out of the
optical path of the existing system for use of either
system as the situation would warrant.

Ford Aerospace has included training, for the
maintenance and operations contract personnel who
operate and maintain all the flight support equipment
for the MCC, in the subcontract.

CONCLUSIONS

NASA and Ford Aerospace have selected what we
believe is the optimum large screen display projector

for our requirements. A methodology for the
continuation of the system development and integration
is in place and shall deliver the superior product NASA/
JSC is accustomed to.
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ABSTRACT

Efficient utilization of computer graphics technology has become a major

investment in the work of aerospace engineers and mission designers. These new

tools are having a significant impact in the development and analysis of complex

tasks and procedures which must be prepa,'ed prior to actual space flight.

Design and implementation of useful methods in applying these tools has evolved

into a complex interaction of hardware, software, network, video and various

user interfaces. Because few people can understand every aspect of this broad

mix of technology, many specialists are required to build, train, maintain and

adapt these tools to changing user needs.

We have set out to create system where an engineering designer can easily work

to achieve their goals with a minimum of technological distraction. We have

accomplished this with high-performance flight simulation visual systems and

supercomputer computational horsepower. Sophisticated but simple to use geometry

generation, translation and modification systems input designer concepts to a

motion design systems after which our visualization and scene rendering tools

are invoked. Control throughout the creative process is judiciously applied

while maintaining generality and ease of use to accomodate a wide variety of

engineering needs.

INTRODUCTION

Planning of space missions has historically been a slow and tedious process.

Drawings and exact measurements were drafted on paper for the various sequences

that had to occur throughout a mission scenario. Launch preparation, mission

operations, return to earth and post-flight ops are analyzed for time-line

schedule conflicts, potential problems, and for detailed failure avoidance.

Within the last decade, CAD systems have become the predominant tools to assist

with mission data design, operational determinations and detailed analysis. 3-D

CAD systems have proved extremely valuable in the areas of 3D design data

storage, distribution, retrieval and modification. Although most mission

information can be processed by traditional CAD systems, there are major gaps in

their ability to rapidly work out "what-if" changes and to easily create video

based presentation materials.

81



Recent Developments

High-performance simulation graphics systems have ushered in a new age of
productivity with tools that allow orders of magnitude increase in performance.
These systems allow an analyst to rapidly prototype changes and evaluate
operational procedures in real-time, while providing videotape recordings of
their results.

The variety of new systems, software tools and fully interconnected networks,

allow complex planning and analysis scenarios to be automated.They also tend to

be virtually self-documenting. Distribution of video-taped presentations to high

level decision makers has rapidly become standard operating procedure for

critical projects that require rapid turn-around.

In our quest to satisfy advanced visualization needs for hardware design and

operational simulation, we have identified several key areas of concern.

3D Object Data Configuration

Data Compatibility Interfaces

Multi-System Communication

Production System Integration

Production Compatibility

3D OBJECT DATA CONFIGURATION

When working with 3D geometric representations of objects whether they be parts

of a large spacecraft or minute gears and wires, it is very important to know

their position, scale, and orientation. A designer must define an object

hierarchy relative to a global zero point and specify a rotational point for

each moving component, otherwise, no useful motion can be performed. Part colors

and shading type, levels of detail, transparency and texture choices must also

be carried along with object data geometry and topology.

We have constructed a variety of tools which allow a designer to read, status,

break up, combine, delete, add, modify, reorient or otherwise change object

geometry and / or attributes with a series of simple commands.

For example: p2p -ro 90 -45 30 -su i00 -tr i000 i0 -50 < part > newpart

This "p2p" filter will scale file "part" by i00, rotate X by 90, Y by -45 and Z

by 30 degrees, will translate the object to I000, I0, -50 and create a new file

"newpart". These tools allow a designer to avoid manually searching and editing

3D object data files to make changes. Many of these tools can be easily adapted

to menu based windowing environments.

We have found that the more robust a 3D object database structure is, the easier

it is for designers to define i_portant object attributes early on. This reduces

the need to manually add information later. Changes can be made easily, quickly

and effectively when a complete database structure already exists.
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DATACOMPATIBILITYINTERFACES

Oncea 3Dobject database incorporates all pertinent information, that data must
be made compatible with differing 3D graphics systems and software. Many of
these systems require their own special format for object data and somereqire
more than one file of information to process an image for a single object.
Compatibility can becometime consumingwhenmigrating useful information from
one system to another. To deal with this problem efficiently, a series of tools
have evolved. They are:

Filters : Strip out, add or process numerical information or
object attributes from one input object to another. Filters
usually work on data used by one type of system or software.

Translators : Reformat object data, often in a major way, for use
in different computer display system hardware and rendering
software packageswhich require very specific input formats.

Compressors : Strip out unused information, truncate long numbers,

optimize, encode and combine data in databases to to avoid

redundancy. Archive utilities are specialized compressors.

They are useful in reducing data storage requirements and in

minimizing data transfer time.

Switchers : Substitute one section of data for another, often

geomety, when a boundary condition is reached or some

external flag has been set. These are useful for performing

dynamic "Level Of Detail" changes on display systems. Limited

throughput often degrades performance degrades as level of

detail increases. As an object approaches the viewer, higher

fidelity versions are switched into display system memory

Pixel Encoders : Allow data-rich pixel based images to be reduced

into smaller more compressed files for better storage size.

Color Compressors : Allow images with many colors to be reduced

and averaged down for systems with less capability to process

and display that data. Also reduces file size.

Compositors : Allow a neutral user designated color to act as a

window for another image to show through. A composite image

file of both images can be saved independently.

Mappers : Allow a designer to define sections of an image to be

used as surface texture maps for wrapping around or pasting

bit-map images onto objects. Often images are scanned in with

a video device to create the images used in texture mapping

applications. This technique can be useful, giving the viewer

the impression greater apparent detail exists on an object's

surface then is contained in its geometry description alone.

Flexible data cempatibility tools allow designers to free themselves of the

limitations imposed by different display hardware and / or rendering software.

Virtually any type data can be used anywhere it is needed (with a little help).

83



MULTI-SYSTEMCOMMUNICATION

Data transfer and remote system control

Production environments are often complexand interconnected. This imposesmany
constraints upon a designer. Passing data betweenunlike systems can occupy
valuable creative time. Humaninteraction in performing file transfers and
conversions is unneccesary and inefficient. Thesetasks should be handled in an
automatedfashion. To this end, the following tools have beendeveloped:

Transfer Utilities : Small, commanddriven tools which allow a
designer to transfer single or multiple files from one place
to another place with a minimumof headaches.These tools can
be highly intelligent. They might check specific system
directories to determine what files are there and which of
them arecurrent so as to retieve or send them.

For example: Getnet Regis DUA0users.panos DAT5 /usr/greg/data

This con_and will Get all version 5 .DAT files from the directory users.panos on

disk DUA0 on the Regis system over the network link and it will place them in

the directory/usr/greg/data on the system where the command was evoked.

Control Utilities : Allow a designer to send a series of control

commands from a system port to an external peripheral device

(such as a Videotape Recorder) to do something useful.

For example: Vtr -m 1 -I 6 -b 2000 -r I0 -S -f Regis::Renderer

This command will send a command out to a pre-designated port on the system

where the command was executed. The port is wired to a Videotape Controller and

the command is asking it to select VTR machine number 1 (-m i) and to connect

the incoming video line number 6 to the machine's input (-i 6). The -b 2000

option places the Vtr edit in-point to frame 2000 and allows a i0 frame edit (-r

i0) at that point. The -S option asks the Vtr to go to "Standby" mode after it

is done and the -f option will send a "done flag" to the "Renderer" program

which is running back on the "Regis" system so it may begin another task.

Very often these utilities are highly system and software specific. Many of

these tools contain security passwords, system identification numbers, codes,

data-word sizes, and directory destinations and will allow privledged access

that should be carefully protected.

Production environment developers must determine the safest and most efficient

scheme for inter and intra-systemcommunicationandcontrol. Frequent changesto

information embedded within these tools should be avoided. Insured reliability

of use for all users and the programs that serve themshouldbe a top priority.

PRODUCTION SYSTEM INTEGRATION

Production system designers often overlook analog video signal routing problems.

Digital computer display system details and their networks are often closely

studied, while requirements for video signal distribution, propagation and

interfacing are left to last and regarded as the least important aspects of the

system.
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Video signal needs must be attended to as a primary area of concern for the
production system designer. It is a commonfallacy to believe that manydesired
effects can be achieved digitally with rendering tricks and additional computer
based techniques. Although this may be true for those who posess intimate
knowledgeof these tools, it is muchsimpler to create a desired effect with the
use of video signal mixing and compositing with multi-track recording, time-base
correction, and encoder function controls. This is the cross-over point where
designers who have concentrated on becomingvery proficient programmersbecome
lost. Video engineers, with their knowledgeof RGB,sync, key-channel, matting
and analog calibration often take over at this point. Here are a few examplesof
video signal processing options:

Encoding : All Frame-buffer and display systems require signal
conversion of their RGBoutput into a composite video form,
usually NTSC.Encoders perform this conversion and are able
to fine tune and juxtapose certain componentsof the output
video. For special-effects, calibration, and interfacing to
video switchers, color-keyers and VCRs, encoders are needed.

Keying : Enables one encoded video signal to be superimposed over

a background v_deo signal from a different source. A neutral

color acts as a window on the foreground video signal. This

is a very important feature for any advanced production

system.

Synching : All input and output video signal sources should be

locked to a synchronization clock signal to allow glitch-free

effects. Source switching, dissolving, fading, keying, etc.

all work much better when all systems are "genlocked" to

house sync.

Switching : Multiple video sources can be switched electronically

by computer or with keyboard based control functions in a

good switcher. Different video lines can be re-channeled on

the fly as production needs change and advanced effects like

bordering, split-screen, quad-screen, title insertion, fade,

dissolves, wipes, and highlights can be performed by good

video switcher component which has been properly configured.

Recording : VTR Controls that are properly interfaced to the

production system can be a major benefit to creative usage of

all possible effects. It is a disadvantage for a designer to

have to manually set up and button push a VTR's console to

get it to perform the required actions. Today, most VTRs have

controllers available to enable remote operation. Computers

may also be allowed control of a VTR with multi-tasking.

These options enable a designer to create advanced visual material with the

appropriate interconnection of video component and display system output.

Multiple passes allow for increased scene complexity when using matting and

keying techniques that a computer display alone would not be capable of. Simple
effects like a wipe or page turn. tend to be very time consuming for a digital

computer to perform while a video effects switcher will function in real-time to

accomplish such an effect.

With proper initial configuration of the above video components, a designer will

be able to dynamically set up each scenario by using commands and script based

execution sequences run from the host computer where they are already doing most

of their work. This approach can remove the need to hand wire a video panel,

perform manual VTR edits, or keep a video person around on a full time basis.
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PRODUCTIONCOMPATIBILITY

NamingConventions

In any production environment, there exist manydifferent formats to contend
with. Digital text and binary data files can be extremely varied in their
formats. A program which requires a picture file for display on a computer
frame-buffer may want it's data in ASCII, humanreadable text, while a CAD
programneeds a BINARY compressed geometry file representation as input.

Therefore a good plan for production compatibility becomes essential to assure

continuity and efficiency throughout the creative process. Step one is to think

out a good labeling scheme for the varity of information one needs to deal with.

Good use of terminology for different information types can be essential to

properly understand what takes place in a production script. As a production

evolves and is modified, it can be virtually impossible to keep track of files

and taped sequences for replacement and editing if sensible names are not used.

Disk and tape archiving is greatly simplified with this practice as well. Refer

to Appendix A for details regarding suggested format naming conventions.

Commenting

When program tools modify files of data it is important to add comment lines

describing what has been changed in the data end when changes were made.

For example, here is a geometry file that was processed through our "p2p" filter

to reposition the 3D object data:

I Tue Feb 28 11:41:55 1989
surface Active FlatShaded

v 7 (7 Vertices)
w 256

i00 -1610 980 256

i00 -1610 -1580 256

1910 200 -1580 256

1910 200 980 256

i00 2010 980 256

I00 2010 -1580 256

-1710 200 -1580 256

polyp2p -ro 90 180 -45 -su i0 -tr i00 200 -300
attributes Active FlatShaded

p 5 (5 Polygons)

0 i 2 3 (255 175 o)
4 5 6 0 (255 0 255)
0 6 5 1 (255 255 255)

3 2 5 4 (0 0 255)
3 4 6 0 (255 0 o)

In the above example, the "p2p" filter added the comment line to the top of the

file saying what exactly has been done. In this case the file was rotated by X =

90, Y = 180, Z = -45, scaled up by i0, and translated by i00, 200 -300.

If necessary, all the values in the comment line could be used to convert the

data back to the original unmodified form by negating the numbers and

re-filtering the modified file. This feature can save hours for a designer who

has made a mistake on or deleted by accident a critical file.

Listing

Another good practice is for a designer to build complex objects out of as many

smaller object component files as possible. It is easy to combine them later
with a "concatenate" command or in a script. This allows a great deal of

flexibility when making slight changes, color-coding pieces or when showing only

what is needed to aviod overloading a display generator or renderer.

Using a "Listing" file is the preferred way of specifying many different parts

to be treated as one big part at runtime.

For example, in a Space Shuttle made of 7 major component files, the "Listing"

file would be defined like this:
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SpaceShuttle components
#
# Pathname/file Description # of polygons

#
/shuttle/fuselage.P # FUSELAGE p 170

/shuttle/blkhd.P # BULKHEAD p 60

/shuttle/cnopyfwd.P # CANOPY p 80

/shuttle/bay.P # BAY p 50

/shuttle/vrtail.P # VERT. TAIL p 30

/shuttle/wings.P # WINGS p 80

/shuttle/rms.P # rms pieces (4 of them) p 70

When a display program is invoked we would specify the "shuttle. l" file as the

file to display. This would treat all the pieces as one singular object. They

would all move together but each would retain their own attributes such as

color, shading type, transparency level, etc.

Display tools

The "examine" program allows a designer to work with 1 to 4 objects, each with

up to 16 data files. This enables a designer to easily rotate and translate the

view, change the background color and light direction, and to manipulate each

object separately. The program also has a helpful arrow which points at the

light source and a clock hand which rotates once every second to indicate the

display system frame rate for use in overload assessment.

For example: examine -f0 shuttle.l -fl earth.p -f2 gpsl.p -f3 gps2.p

Here we control the shuttle, the earth and two gps satellite models all as

separately moving objects. Each object has independently controllable offset,

rotation, and translation, and is manipulated through separate data tracks.

"Examine" is one of our major workhorse animation programs that we use in our

production environment. It runs on the Poly 2000e computer image generator,

however, its functionality is extensible to virtually any real-time display.

File flipping of 3D object data, where object data varies its geometry from one

frame to the next, is also possible. This feature will allow animated display of

incrementally deformed 3D objects and to rapidly flip through them while

maintaining real-time control of their position and view orientation. However,

one must always watch their polygon count when loading these large amounts of

data into a real-time system. Otherwise, performance may degrade and other

undesirable display artifacts may appear. Refer to Appendix B for the examine

program's options and argument specification.

Rapid Prototype Generation

The last Real-time animation program that I will mention is .the "RPG" pr.ogram or
Rapid Prototype Generator. This "CASE-like" tool was orlglnally concelved by

many different people at different facilities simultaneously (like all great

ideas). RPG is another major tool which helps us to carry the banner for more

efficient and creative production.

The concept is to allow a non-programmer (and hopefully good designer) to

rapidly define, build and animate complex hierarchies of 3D object components.

Without the need for a great deal of complex technical display-system-specific

knowledge, a designer can use RPG to do this in record time.

First an inventory is made of the 3D objects that are to be used. Determination

of what is going to move relative to what (defining the hierarchy) and finding

offset distances and an axis of rotation for each moving part is next.
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This is done by making a simple moveto the center point (0,0,0) in any simple
display programand then reading the numbersoff the dial box or screen). A text
script is then created by typing in the object hierarchy, offset values, track
assignments and display diagnostic features. This step can take from 5 minutes
to a half hour depending on howwell a plan is mappedout and how fast one can
type.

The script is then run through the RPGprogram "update"on the host system.
Essentially a compiler, "update" generates C source code and compiles it into an

an executable module. Next, a "builder" program is run on the image generator

system where the hierarchy (as described in the RPG script) is assembled and the

3D object modules are loaded into real-time display list memory.

last, the executable module created by "update" is run on the image generator.

The designer can then use standard channel-based animation package features to

define, save and preview keyframe files.

A detailed description of the statement format and syntax for RPG scripts is

beyond the scope of this paper. We also feel it would be possible to make the

impl_mentation we have chosen even simpler to use. A menu driven script builder

utility with a full graphical interface has been suggested and will be developed

in the near future. Generalized structures in the program will allow differing

real-time displays to utilize the same scripts and 3D object data through the

use of special device driver modules that can be linked to the RPG program.

Refer to Appendix C for an example of a simple RPG program script.

CONCLUSION

Only through years of experience have we been able to best determine what was

needed to enable efficient production of computer animation and effects. After

many hours of difficult 3D object geometry debugging, we were able to design
flexible and easy to use tools to allow us to do in minutes what used to take

hours. After many days and weeks of writing custom non-reusable C programs for

every animation, we developed "RPG" with which we could produce our working

programs in minutes. Once we created our animation package library we could

generate and save reusable motion data files that took hours to develop by hand.

Motions can be recalled in seconds and used in virtually any animation.

Once things begin to work as efficiently as possible, the greatest burden lies

with the designer to dream up, build and produce the visuals that they desire.

And yet, after countless creative sessions, more efficient ways to facilitate

the creative process always seem to emerge.
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APPENDIX A

Description of suggested naming convention for different data file types.

Pixel Image data file formats:

Image.BIN : An Image

Image.RLE : An Image

Image.ASC : An Image

Image.HAM : An Image

Image.IFF : An Image

Image.R8 : An Image

Image.PIX : An Image

file in computer readable BINARY.

file in "Run Length Encoded" BINARY.

file in ASCII, human readable TEXT.

file in Amiga "IFFHAMmode" BINARY.

file in Amiga "IFF" Low, Med or HiRes BINARY.

file in BINARY RLE for "Cubicomp Picturemaker".

file in BINARY RLE for CubicompMap Mode.

Text data file formats:

file.COM

file.LOG

file.POS

file.MAT

file.LGT

file.ENV

file.RPG

file.HDR

file.WFT

file.SCN

file.MMP

file.ENV

file.CM

file.L

: A Script file of run-time Commands in TEXT.

: An output file of program runresults in TEXT.

: A "TRACER" hierarchical Scene data / offset file in TEXT.

: A "TRACER" part M_terial coefficient data file in TEXT.

: A "TRACER" Light source description file in TEXT.
: An "TRACER" Environment data file In TEXT.

: An RPGhierarchy, offset and control data file in TEXT.

: A "Cubicomp Picturemaker" Header file In TEX.

: A "Cubicomp Picturemaker" Wireframe test filein TEXT.

: A "Cubicomp Picturemaker" Scene test file in TEXT.

: A "Cubicomp Picturemaker" Color Map file in BINARY.

: A "Cubicomp Picturemaker" Environment file in BINARY.

: A "Cubicomp Picturemaker" Command Macro file in TEXT.

: A List of Geometry files with various components in TEXT.

3D Object Geometry data file formats:

data. GEO :

data .MOV :

data. OBJ :

data. TRI :

data. SPH :

data. DAT :

data. WS :

data. P :

data. p

Motion data

data. MOT :

data.CAM :

data. PW :

data. K :

data. k :

"Aegis Videoscape-3D" Polygon floating-point TEXT.

"MOVIE.BYU" Polygon floating-point TEXT.

"Symbolics S-GEOMetry" polygon floating-point TEXT.

"TRACER" Polygon triangle floating-point TEXT.

"TRACER" Sphere data in floating-pointTEXT.

"RI-CDAS" quartic data in floating-point BINARY.

A "Cubicomp Picturemaker" WorkSpace file in BINARY.

"Poly 2000" Polygon 16 bit integer BINARY.

"Poly 2000" Polygon 16 bit integer TEXT.

file formats:

"Aegis Videoscape-3D" Object motion floating-point TEXT.

"Aegis Videoscape-3D" Camera motion floating-point TEXT.

"Cubicomp Picturemaker" keyframe Position Word TEXT file.

"Animation Package" Multi-Channel 16 bit integer BINARY.

"Animation Package" Multi-Channel 16 bit integer TEXT.
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APPENDIXB

Examineprogramoptions and arguementspecifications.

Flag Meaning Default

-a#m<f> animate object # using

mode m once

changing every f frames 1

modes: [a]dd - add files starting at current position

[o]nce - 0 up to n.

[b]ounce - 0 up to n, down to 0, ...

[c]ycle - 0 up to n, 0 up to n, ...

-b <file> filename of background objectn one

-c# # channels # present

-d debug mode false

-f# filename(s) of object # follows

-k keyframe (.K) filename follows default.K

-m light moves with view light is motionless

-r # new rotation sensivity follows 32

-s silent mode (no beeps) when switching files false

-tn # new translate W value for object n follows 256

if n not present, value used for view

-T do not clear or write to text screen write help screen

-v # # # view offset is # # # (x,y,z) 0 0 0
-w # new scale W value follows 256
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APPENDIXC

Simple RPGtext script for an interlocking gear mechanismanimation.

# Interlocking Gear RPGScript

First we Define the Hierarchy

TREE

world : Chan0

i00 I01 102 103 104 105

XYZ.I

box : world

0

box.l

gear0 : box

i0 ii

gear0.1

gearl : box
20 21 22

gearl.l

# Next we assign the Offset and Track assignments

MATRICES

trans( i00, val[0][0], val[0][l], val[0][2] )

rotx( I01, val[l][0]*32 )

roty( 102, val[l][l]*32 )

rotz( 103, vai[i][2],32 )

trans( 104, val[2][0], val[2][l], val[2][2]

scaleu( 105, val[0][3] + val[l][3] + val[2][3] + 256 )

trans( 0, val[3][0], val[3][l], val[3][2])

trans( i0, O, 160, -ii0 )

rotz( ii, val[5][0] *32 )

trans( 20, 0, 40, 0 )

roty( 21, val[5][0] * (-32) + 4096 )

rotx( 22, 16384 )

# Last we Define our Display Diagnostics

leds(0,"O K0:%6d Kl:%6d K2:%6d K3:%6d",val[0][0],val[0][l],val[0][2],val[0][3])

# EOF
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INTRODUCTION

Engineering visualization is the use of comput-

er graphics to depict engineering analysis and

simulation in visual form from project planning

through documentation. Graphics displays let

engineers see data represented dynamically

which permits the quick evaluation of results.

The current state of graphics hardware and

software generally allows the creation of two

types of 3D graphics. One type features

highly-detailed, realistic images that are dis-

played in non-real-time. The other type per-

mits real-time display, but only for relatively

crude graphics. (Real-time for our purposes is

defined as the update of a display at a sufficient

rate to make the change invisible to the human

eye, typically 30 frames per second.) There are

simulators capable of producing realistic 3D

motion in real-time but their cost can be pro-

hibitive. Animation provides an altemate route

to generating realistic 3D graphics which are

recorded on video for later playback in real-

time. A fully produced video animation has the

power to provide the organization, clarity, and
attention to detail demanded for the communi-

cation of complex engineering concepts.

This paper presents the use of animated video

as an engineering visualization tool. The engi-

neering, animation, and videography aspects of

animated video production are each discussed.

Specific issues include the integration of

staffing expertise, hardware, software, and the

various production processes. A detailed ex-

planation of the animation process reveals the

capabilities of this unique engineering visual-
ization method. Automation of animation and

video production processes are covered and fu-

ture directions are proposed.

EVOLUTION OF ANALYSIS AND

SIMULATION VISUALIZATION

Before turning to a discussion of animation and

video, it would be helpful to review the evolu-

tion of engineering visualization. Some ten to

twenty years ago, analysis and simulation re-

suits were printed out as pure data. Mountain-

ous stacks of computer paper were produced

that required hours to sift through. The engi-

neer could graph the data in two dimensions on

graph paper or perhaps have a draftsman illus-

trate it. The development of plotters eliminated

the need to produce these graphics by hand.

Later, as computers grew more sophisticated, it

became possible to represent three-dimensional

objects using complex data structures. The

plotter was immediately employed to produce

two-dimensional renderings of the objects. It

also became possible to produce static 2D dis-

plays of the 3D objects on a CRT. The natural

next step was to set the objects in motion. Do-

ing this has proved to be a most challenging
task.

A great deal of computing power and memory

is required to render a 3D object quickly

enough to provide the illusion of motion. The
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complexity of the scene being rendered is a

major factor in the amount of time required.

The result is that a crude representation may

move at a satisfactory rate while a realistically

detailed image moves too slow in real-time to

be of value. Obviously the goal is to produce

realistic real-time graphics. Technology today

is on the verge of providing such graphics but

only at a relatively high cost. The speed and

realism of the specialized high-performance

simulators is astounding, but so is the price. It

is this gap between affordable high-speed sys-

tems and realistic real-time display that anima-

tion fills so well. Depending on the level of

complexity desired, animation may require a

great deal of time to generate, but when com-

pleted it provides real-time speed via videotape

playback.

DEVELOPING AN INTEGRATED

APPROACH TO VISUALIZATION

The process of engineering visualization is a

complex task. It is made even more difficult

when the demands of engineering documenta-

tion are added to it. Although engineering sim-

ulation, graphics, video, and documentation

have all been previously used as stand-alone

entities, the integration of them as a full-

fledged production tool has just begun. By

identifying the staffing expertise required, co-

ordinating that expertise, employing the appro-

priate hardware and software, and standardiz-

ing the processes involved, engineering visual-

ization can simultaneously be integrated and

simplified (Figure 1). This type of approach

was used in the development of the Mars Rover

I En_neer I1Anh_atorl] Video_phe-_ I Ha_ware] _

Simulation/Analysis/Animation

Proiect

I I
[Documents I [ Video ]

Figure 1 - Project Integration Overview

Sample Return Mission video shown at the

1989 Graphics Technology in Space Applica-
tions conference video show.

DIVERSITY OF EXPERTISE REQUIRED

The staffing expertise required for engineering

visualization using animation consists of three

general categories: engineering, animation, and

videography (see Table I). Although the topic

is "engineering" visualization, the animation

and videography staff provide unique expertise
and talent that cannot be overlooked.

Table I -Diversity of Expertise Required

Engineering:

Aerospace
Sciences
Analysis

Simulation
Hardware Design

Software Dev.
Communications
User Interfaces

Graphics
Fractal Geometry

Animation:

Artistic Creativity
Visual Composition

Storyboarding
Computers

Model Building
Motion Hierarchy
Motion Generation

Kinematic Timing
Rendering

Image Manipulation
Paint Systems
Digitization

Videography:

(Video)
Single-frame Record
Editing Operations

Switching
Special Effects Units
Character Generators

LaserDiscs

(Audio)
Scriptwdting
Announcing
Recording

Editing
Music

Sound Effects
Sound Mixing

Digital Processing

Engineering expertise can be broken down into

two dissimilar disciplines. The first represents

the "line organization" engineering staff that
contributes technical direction to the effort.

The areas of expertise of this group include

those traditionally associated with aerospace

engineering: sciences, research, design, analy-
sis, and simulation. The second consists of

software engineering personnel. They provide

direct support in the form of system administra-

tion, graphics programming, and software de-

velopment.

The animation staff, besides operating the ani-

mation software, are responsible for adding the

realism and presentation value to the anima-

tion. They collaborate with both the line engi-
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neer and the videography staff to produce a sto-

ryboard which summarizes the visual content

of the animation. They then contribute a vari-

ety of skills and artistic talents including visual

composition, image manipulation, kinematic

timing, model building and other components
vital to the creation of an animation.

Videography, like engineering, involves two

separate areas of expertise. One area includes

the creative skills and technical knowledge

necessary to produce the audio soundtrack.

The scriptwriter must know how to write for a

speaker. The announcer must be able to annun-

ciate the text and must be trained to avoid pop-

ping and hissing speech. Audio technicians

must understand an array of recording, editing,

and mixing equipment. Video is the other, and

more obvious area, of videography expertise

required. The hardware intensive nature of

video production requires considerable techni-

cal knowledge. Technical savvy must be com-

bined with artistic and creative talents to pro-

duce an effective video presentation. The

videography staff also works closely with the

animation staff providing both technical and
creative direction.

ELEMENTS OF ANIMATED

VIDEO PRODUCTION

The process of creating an animated video pro-

duction occurs in four major steps. Planning is

the first step. It includes the development of a

script, a storyboard, and a shot list. The script

is a written narrative for the presentation that is

carefully timed to coincide with the corre-

sponding images on the screen. The storyboard

is a series of thumbnail sketches of the images

themselves. The shot list is a description of the

images with details about length and other

technical issues. These are developed together

by the engineering, animation, and videography

staffs and provide a basic plan for the final pro-

duction. All are used to guide the other steps

of the process. The second step is the genera-
tion of the animation. The animation staff uses

the storyboard and the shot list to generate the

needed sequences. When the animation is

completed it is recorded on videotape or other

video media. The third step is the development

of an audio track. The script is recorded and

edited to the proper length. Music and sound
effects are then added. When the audio track is

completed, it is recorded onto the sound chan-

nel of a videotape or disc. The animation and

audio track development steps may occur si-

multaneously if planning has been thorough.

The final step is video post-production. The
animation and audio (now both recorded on

video media) must be edited together and title

and credit sequences added.

The transmission of knowledge and informa-

tion from the engineering workstation to the

video presentation is made possible by anima-

tion. What distinguishes animation from a sim-

ple recording of images from the workstation?

Single frame recording to video provides real-

time playback of both, but animation adds

valuable visual realism in a variety of ways.

This is revealed through a more detailed exami-

nation of the animation process (Figure 2).

This examination is based on the assumption

Model Building ]

I
I 1 I I

[ F_eering [ Animation 1 Supplmcn_ TextureModeLs Models Models Mapping
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Figure 2 - Elements of Animation
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that the planning phase has been completed and

that a storyboard, shot list, and script have thus

been developed.

Model Building

Model building is one of the first activities re-

quired in the animation process. There are

many levels of 3D modeling. The highest level

includes the models familiar to most engineers.

The precise, technically complete, 3D models

used in engineering are invaluable. The detail

of these models is demanded by the rigorous

requirements of design and analysis. At the

other end of the modeling spectrum are crude,

inaccurate representations of objects valuable

for only the most cursory evaluation of size and

motion. The advantage to these latter models is

the speed with which they can be manipulated.

Animation requires the complete redrawing of

every model on the screen thirty times to gen-

erate just one second of motion. The more de-

tail a model has, the more time is required to
draw it. The need for detail must then be

weighed against the amount of time available

to produce an animation. Animation models

are developed with an awareness of this fact.

The optimal relationship between speed and

detail is usually found by using models in
which unseen mechanical details are omitted.

Very close attention is paid to the external vi-

sual details but the unseen inner workings are

ignored. If focus on a particular mechanical
feature is desired, it can be modeled and added

at the appropriate point in the sequence. Mil-

lions of unnecessary calculations can be elimi-

nated by the use of these simpler models. At

the same time, to the viewer, the model is phys-

ically complete. The animator may develop

supplemental models to represent scenery and
other items.

Texture Mapping

Once models have been developed, their real-

ism can be enhanced by a technique called tex-

ture mapping. Texture mapping is the process

of generating a 2D image which is then

mapped onto the surface of a 3D model. There

are several forms of texture mapping and each

form excels in a particular situation.

The simplest type of texture mapping is where

a digitizer or paint system image is mapped di-

rectly onto the surface of a model. This is

highly effective for producing foregrounds and

backgrounds, and for adding logos, flags, and
unusual surfaces to models. In the case of a

foreground or background, the image is simply

mapped onto flat or deformed surfaces and

placed in the scene. Alternately, an image can

be wrapped around a model to simulate the ap-

pearance of metal or some other material. In

the Mars Rover video, this type of mapping

was used extensively in the Titan launch se-

quence and to create the rocky Mars surface.

A specialized type of texture mapping called

bump mapping can be used to simulate a relief

surface where none exists. The image is

mapped onto an object but no color is used. In-

stead, bump mapping uses the luminance val-

ues of the 2I) image to determine how to de-

flect light falling on the object. Luminance is a

measure of the black, white, and grey values

contained in the image.

Similar to bump mapping is transparency map-

ping. Like bump mapping it uses only the lu-

minance values of the 2D image. The differ-

ence is that transparency mapping uses these

values to determine a level of transparency for

the surface onto which the image is mapped.

White will cause the surface to be opaque,

black will cause it to be transparent.

One other useful type of texture mapping is re-

flection mapping. Reflection mapping retains

the 2D image's color and maps it onto the sur-

face of an object. What makes reflection map-

ping special is how the map image is generated.
The animation software is instructed to render a

view of the scene from the location and orien-

tation of the :surface that is to show the reflec-

tion. This view is used to generate the map im-

age which may then be sized and distorted as
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necessary to cover the surface.

Motion Generation

The next step in creating the animation is the

actual generation of movement. One of the
most common methods for accomplishing this

is called keyframe animation. Keyframe ani-
marion allows the animator to define frames

depicting the starting and ending positions for

objects in the scene. The number of frames

that are to occur between the starting and end-

ing frame (at a rate of 30 frames per second)

are then specified. The computer interpolates

the position of all objects for each of the inter-

mediate frames. Transformations along the ob-

jects' X, Y, and Z axes can be used to create

nob-linear paths. Translation, rotation, scaling,

and skewing are some of the many attributes

that can be specified singly or in combination

to cause transformations. If connecting parts of

an object must move relative to one another,

this may be depicted using a technique called
hierarchical motion. Hierarchical motion in-

volves the assignment of relationships between

different parts of a model. The main section of

a model may be designated as the "parent" and

its appendages as "offspring." The action of

the connecting joints may also be defined with

regard to limiting angles and rotational axes.

The result is that when the parent moves, the

offspring follow in a way defined by these rela-

tionships. This can make the simulation of re-

alistic movement much easier to accomplish.

Ultimately, the animator must use these tech-

niques to create motion which is realistic and

compositionally logical to the viewer, but also

technically accurate in the eyes of the engineer.

Lighting

Convincing motion of realistically designed

models goes a long way in creating an authen-

tic animation. There are other compositional
elements that must also be considered. The an-

imation software provides an environment

somewhat analogous to a windowless room: if

no lights are turned on, nothing can be seen.

The placement of light sources then becomes

an issue. In the simulation of aerospace opera-

dons, it might seem logical to have only one

light source representing the sun. In truth how-

ever, other sources of light must be considered.

Light reflected from the Earth, the Moon, or

other bodies can brighten unlit areas. Small

man-made sources of light may also need to be

simulated. Several different types of light

sources are usually available in the animation

software. Flood, spot, unidirectional, and om-

nidirectional sources are common and may be

used to create specular, diffuse, and ambient

light. Color can often be added to light sources

as well. The selection and placement of light

sources generally follows the same principles

used in photographic or motion picture light-

ing.

Special Effects

The presence of light would also imply the

presence of shadows. Shadows are not an ordi-

nary by-product of a lighted object in a com-

puter however. The location and darkness of

shadows must be computed based on the loca-

tion and characteristics of the light sources and

the shape and location of the objects in the

scene. It is a complex problem with a compu-

tationally intense solution. Implementation of

shadowing usually results in a significant in-

crease in the amount of time required to render

each frame but is justified by a dramatic in-

crease in image realism. The advent of shad-

owing options is a fairly recent development in

animation software. At the current stage of

hardware and software development, shadow-

ing is still considered a "special effect."

Other capabilities which fall under the category

of special effects include transparency and dis-

tortion of objects. While a transparency map

can be used to give an object a transparent

quality, variations in degree of transparency are
not a standard feature. Such an effect can be

used to reveal hidden structure within an ob-

ject. An example of this appears in the canister

transfer sequence of the Mars Rover Sample
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Return Mission video. There is no standard

method of producing variable transparency

among those animation packages that support
it. It is achieved in one package by entering a

transparency factor for each individual frame in
which the object's surface appears. This can be
a tedious process but the result provides a very
effective way to present technical detail.

Distortion of objects is a special effect that is
useful for depicting non-rigid objects. Plastic,

rubber, and textile objects are likely candidates
for the use of distortion effects. Distortion is

still the subject of much research and, like
variable transparency, is achieved by a number
of methods. Metamorphic distortion is
available in some animation packages. This

method allows a model's shape to be altered
from one key frame to the next. The animation
software then interpolates between the shapes

in the same way that it interpolates an object's
motion. Another form of distortion permits an
object to be stretched along one of its three ax-
es while it is compressed along the other two.
This is sometimes referred to as volume distor-

tion. Skew is a diagonal distortion of a model

along two of its axes. These techniques can
sometimes be used in combination with one an-

other. This can be very effective at adding nat-

uralism to the motion of flexible objects.

In-House Software Development

Most of the object manipulation methods dis-
cussed thus far are made possible by the stan-

dard or advanced features of commercially
available animation packages. Animation of
certain types of objects or effects are not cur-

rently within the capabilities of these packages
however. The use of in-house graphics pro-
gramming expertise may be helpful in such
cases.

Research was needed in several instances to de-

termine how to simulate various effects for the
Mars Rover video. The action of the lander ve-

hicle's parachute filling with air required the

development of specialized code. Smoke for

the Titan IVs and the Mars ascent vehicles was

initially generated with a complex mathemati-

cal algorithm employing Fourier transforms
and digital filtering. Another method of pro-
ducing smoke was subsequently developed us-

ing an innovative combination of polygon dis-
tortion and moving bump maps. Custom soft-
ware may sometimes be required for the cre-

ation of specific types of motion as well. The
movement of the rover vehicle across the Mar-

tian surface is one example. Each of the six

rolling wheels has to maintain surface contact
with the irregular terrain yet remain in the cor-
rect orientation to the rest of the vehicle. In a

more recent project, research was required to
convincingly depict dust being stirred and set-

fling back to the ground in a low-gravity envi-
ronment. Problems like these are of particular

interest in aerospace where unusual conditions
are so frequently encountered.

Rendering

When all of the image manipulation and mo-
tion problems of the animation sequence have

been addressed, there remains one more step in
the animation process. The animation se-

quence must be rendered in solid form. Ren-
dering is the computing of the final animation
frames using all of the options and effects that

have been defined by the animator. Prior to
rendering, the animation exists only as a wire-
frame representation in the animation software.

Texture mapping, lighting, shadows, and other
effects are not yet visible. It is in this process
where time intensive operations take their toll.

A great deal of computing speed, memory, and
storage are needed to render even a few sec-

onds of animation. When a high-speed render-
ing engine is used, a complex frame full of in-

Wicate objects, reflections, and shadows may
take from four to forty minutes to create. Ad-

ditional time may be required if certain special-
ized rendering methods are used. One of these
methods is called ray-tracing.

Ray-tracing results in highly realistic animated

images. It works by calculating the path of ev-
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ery beam of light from each light source to

each pixel of each object on the screen and then

back to the viewer's eye. It is especially effec-

tive when objects have glass or other highly re-

flective surfaces. Multiple levels of ray-tracing

allow an increasing amount of detail but at a

great penalty in computing time for each addi-

tional level. Ray-traced images have an almost

photographic realism.

Compositing is also part of the rendering pro-

cess and allows layering of separately generat-

ed images. This may be used to add back-

ground elements to a scene that was generated
without them. Compositing reduces the

amount of time required to render an image be-

cause static background images are rendered

only once. Only the moving objects are recal-
culated for each new frame. This would seem

to make compositing highly desirable. Actual-

ly a time trade-off takes place because corn-

positing increases the amount of time required

to display the completed image. This slows

down the recording process. Whether com-

positing is desirable is determined by evaluat-

ing how computing resources may best be allo-

cated between rendering and recording opera-

tions. Another way of compositing is available

that eliminates the recording time penalty. The

use of digital video storage devices and special

effects units allows real-time compositing but

requires the purchase of more expensive hard-
ware.

Single-frame Recording

As each frame of animation is rendered, it is

stored on the computer's mass storage unit,

usually a hard disk. It cannot be played back in

real-time from an ordinary hard disk however
because access time and reconstruction of the

display is too slow. Instead, software is used to

display each frame individually and to trigger a

video recording device to record it via special-

ized animation-control hardware. Among the

devices that may be used for single-frame

recording are videotape recorders, optical

laserdisc recorders, and digital frame storage

devices. Generally only the high-end, profes-

sional-format videotape recorders are capable

of recording in single-frame mode. Recording

of the frames to video completes the animation

step of the animated video production process.

Editing

Editing is the arrangement of raw audio and

video into a complete and coherent presenta-

tion (Figure 3). Audio editing is the next step

of the animated video production process. This

step technically begins when the script is writ-

ten. Scripts are written in a two column format

with the spoken text in the right column and a

description of the corresponding visual images

in the left column. The fight column also con-
tains details about music and sound effects and

instructions to the audio technician. This for-

mat allows each portion of text to be carefully

timed to match the correct image. The lan-

guage of the script must have a narrative flow

that sounds natural when spoken aloud. The

script is recorded onto multi-track audio tape

using a professional announcer. (Untrained

speakers find it difficult to eliminate certain ex-

traneous sounds from their speech. These can

be very distracting in a recorded soundtrack.)

Planning
(Script/Storyboard/Shotlist)

I

I
I Analysis t ISimulation [Animation ILive Video

I I I I

I Raw Video [

I
__J___

Editing

__1__

Final
Production

Record/Edit ]Audio

I
Audio Master]

I

Figure 3 - Video Production Overview
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After the script has been recorded, it must be
edited to eliminate mistakes and to make it the

proper length. Music and sound effects are

then generated or selected from a library and
added behind the voice on another track. A

time code recorded on one track of the tape

makes very precise editing possible. The com-

pleted soundtrack is referred to as the audio
master or the soundtrack master. Because of

the timing elements involved, implementing

changes in the script after the edit session are

very difficult. Usually, re-recording and re-

editing of the entire soundtrack is necessary.

When the audio master has been completed, it

is transferred to a blank videotape or other

video media. The final step in the animated

video production process is editing of the raw

animation video onto the audio master tape.

Live video footage may also be incorporated

into the production at this point. Some animat-

ed (and live) sequences that have been generat-

ed must be slightly longer than the amount of

time they are to appear on-screen. Additional

footage at the beginning and end of each se-

quence gives the video editor a place to create

transitions between scenes. Cuts, dissolves,

and wipes are among the many types of transi-

tions available through modem video editing

equipment. The primary tools of a video pro-

duction facility include character generators,

edit controllers, video and audio switchers, spe-

cial effects units, time base correctors, and

video recording devices. These are used to as-

semble and refine the final video presentation.

Character generators allow the creation of titles

and credits. A special effects unit may be used

to overlay these onto the video footage or place

them on a colored background. Special effects

units can also provide the previously men-

tioned transitions and other manipulation of the

video images. Switchers are used to generate

dissolves, wipes, upstream and downstream

chroma and luminance keying as well as soft

and hard-edged transitions via special effects.

A video edit controller allows precise editing of
the video. A device called a time base correc-

tor may be used to compensate for anomalies in

the video signal. Typically, at least two video

sources are connected through time base cor-
rectors to a video switcher and an edit con-

troller for output to a recording device. Time

code is usually recorded on the video media to

provide frame-accurate control of the editing

process. A standard for time code, developed

by the Society of Motion Picture and Televi-

sion Engineers (SMPTE), is used for most

video and audio editing.

In editing the animation video, the soundtrack

is the reference for assembling the scenes. This

is why integral development of the script, the

storyboard, and the shot list is so important in

the planning phase. Sound effects must pre-

cisely coincide with the corresponding visual

action. The narrative description must match

exactly what is depicted on the screen. The
viewer's interest must be maintained with an

accurate, clear, and concise explanation of the

concepts being presented. With careful plan-

ning and an integrated approach to the animat-

ed video process, this can be achieved very ef-

fectively.

AUTOMATION OF THE ANIMATED

VIDEO PRODUCTION PROCESS

Engineering visualization is still a fairly new

concept. Much of its potential remains unreal-

ized because of a lack of automated processing
and standard interfaces between and within its

various disciplines (Figure 4). Some relation-

ships between engineering, animation, and

video exist already, but in each case the devel-

opment of automation and interfaces has been

an isolated process.

Engineering analysis and simulation have uti-

lized 3D computer graphics since the late-
1970s. Software and hardware interfaces are

plentiful and standards are becoming fairly

well established. An entire industry has arisen

around the development of CAD/CAE worksta-

tions. Networking of computer systems has

contributed an element of transparency to the
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Figure 4 - State of Visualization Technology

interfaces. The Initial Graphics Exchange Spe-

cification (IGES) and Computer Graphics

Metafile (CGM) are among the many graphics

file standards developed for use within this
field.

computer to video interfaces.

The dissimilarity of hardware is at the root of

most problems faced in automating the animat-

ed video production process. The engineer's
workstation, the animator's workstation, and

the videographer's equipment typically have
different screen resolutions. In addition, the

two workstations usually output red, green, and

blue (RGB) signal values at a scan rate of 60

hertz. The videography equipment requires

separate color and luminance signals synchro-
nized and interlaced at a scan rate of 30 hertz.

Getting an image from one device to the next

often requires as much specialized equipment

as do the systems themselves. The capabilities,

limitations, and compatibility of each individu-

al component must be considered. Automation

is made possible only when all of the hardware
interfaces are resolved. If this can be accom-

plished, the next step is the development of au-
tomation software.

Television standards have been around for sev-

eral decades and in no way reflect the current

state of graphics visualization hardware. Tele-

vision standards were designed to allow use of

compatible analog signal by either black and
white or color television sets. Automation of

video production is occurring but with few of

the benefits of digital technology inherent in

the computer industry. One promising new de-

velopment is a video version of the computer
network. The Video Local Area Network (V-

LAN) permits the same degree of transportabil-

ity over video control signals that a computer
network allows over data.

The use of 3D computer graphics for animation

started in the early 1980s and interfaces and

standards for it are just beginning to be defined.

Whereas 2D animation was used almost strictly

for entertainment and commercial purposes, 3D
animation has become a valuable tool in the

scientific and engineering world. Although an-

imation is historically associated with film and

video, the use of 3D computer graphics to gen-

erate animation is requiring unprecedented

Rendering and single-frame recording of ani-

mation can be automated through software.

The development of the V-LAN mentioned

earlier provides the capability to control the

video production process through software and

audio editing can be automated as well. The

complexity and speed involved in automating

these processes requires fast processors, fast

programming languages, and creative and effi-

cient software design.

FUTURE DIRECTIONS

The ultimate expression of automation would

be an integrated system designed to facilitate

the engineering visualization process from be-

ginning to end. Such systems are yet to be de-

veloped but the general direction of the related

industries makes their eventual appearance in-

evitable. Many graphics terminals in use today

have the capability to support multiple screen

resolutions and to accept a video synchroniza-

tion signal from an external source. Some can

generate their own "sync" for direct output to

video. These systems are the first step towards

an integrated hardware system. The software
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tools are also beginning to appear. Video edit

control software that uses the previously men-

tioned V-LAN is now commercially available.

Single-frame recording software is available

which drives videotape animation control hard-
ware. Most of the hardware and software on

the market now is in its first development

generation.

User interfaces for these emerging tools are fol-

lowing the trend towards intuitive operations.

Intuitive interfaces reduce the learning curves

associated with complex software and, if well

designed, can result in faster operations. This

will be especially important to the success of

integrated systems where different types of

users are involved. Consistency between the

interfaces for the engineer, the animator, and

the videographer will result in a smoother flow

of ideas and information and faster production
turnaround.

Engineering visualization technology is rapidly

advancing. Hardware interfaces and software

formats are now being developed which will

streamline the process of documenting the en-

gineering process through animation and video.

The merging of engineering analysis and simu-
lation, 3D animation, and video is a natural

step which will enhance the engineering envi-

ronment. The NASA Mission Support Direc-
torate's Animation and Video Production Facil-

ity hopes that the insight it has gained over sev-

eral years of integrated efforts may represent a
worthwhile contribution to the direction of this

effort.
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Multi-Tasking Computer Control Of video Related Equipment

Rod Molina Bob Gilbert

Exchanging audio-visual information is a

daily part of human communications. The

video medium is the most popular choice

for quickly and effectively conveying

simple or complex information. However,

like other communication methods,

certain conventions must be followed in

order to prevent video from becoming a

collection of useless information.

A completed video presentation

originates from raw audio-visual

material that must be organized into a

continuous flow of information. The

physical equipment necessary for the

post-production process is usually

dedicated computer-based devices that

perform synchronization and control,

generate visual effects, and combine

audio and video signals. Most video

production studios are made up of these

separate devices independently

performing their specific tasks.

The flexibility, cost-effectiveness and

widespread availability of personal

computers now makes it possible to

completely integrate the previously

separate elements of video post-

production into a single device.

Specifically, a personal computer, such

as the Commodore-Amiga, can perform

multiple and simultaneous tasks from an

individual unit. Relatively low cost,

minimal space requirements and user-

friendliness, provides the most

favorable environment for the many

phases of video post-production.

Computers are well known for their basic

abilities to process numbers, text and

graphics and to reliably perform

repetitive and tedious functions

efficiently. These capabilities can now

apply as either additions or

alternatives to existing video post-

production methods.

A present example of computer-based

video post-production technology is the

RGB CVC (Computer & Video Creations)

WorkSystem. A wide variety of integrated

functions are made possible with an

Amiga computer existing at the heart of

the system.

EDITING

Beginning with video editing functions,

the Amiga-based editing system operates

using either SMPTE Time Code or Control

Track as a reference for editing points.

With SMPTE, the preferred reference

format, a high degree of accuracy is

obtained. The CVC WorkSystem has full

control of transport (rewind, fast-

forward, play, stop, still and search)

and editing functions (Insert, Assemble,

Goto, Preview, Perform and Review) while

maintaining a constant update of system

status information. The time-consuming

tasks of logging specific SMPTE Time

Code values, calculating and storing

pertinent edit information (edit points,

match-frames, running-time and preroll)

and searching through raw footage are

now built-in features. The task of

processing and managing the data

necessary for edit decision lists and

cataloging tapes can now be delegated to

specific database management software.

Custom interface hardware allows the CVC

WorkSystem to communicate directly with

the transport of a single machine or up

to 32 separate transports. Normally

incompatible machine formats and brands

can now function within a unified

system. This network environment

provides a common device communications

link that gives the ability to handle

multiple applications and devices

individually or simultaneously within a

consistent operating environment.
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CHARACTER GENERATION AND GRAPHICS

When incorporated properly, captions,

illustrations and backgrounds can

greatly enhance the impact of a video

production. Almost every video

production, simple or complex, requires

the use of some type of character or

graphics generator. Character generators

are usually independant, dedicated

computers that perform the sole function

of adding text and possibly graphics to

video. Choosing a specific character

_energtor can be difficult. They range
In prlce from a few thousand to a few

hundred thousand dollars. The features

of various character generators are also

widespread. However, the general

criteria that most will use in making a

selection is ease-of-use, quality, and

reasonable cost.

The CVC WorkSystem,s graphics processing

power and direct video compatibility

provides a natural ability to fit the

character generator description.

Sophisticated graphics and text are easy

to achieve at a fraction of the

traditional cost. The real significance

though, is that the graphics and

character generating process can

simultaneously occur from the same unit

that is also performing the editing

functions for a continuously flowing

editing process. It is no longer

necessary to switch between machines

(and needing to know the subtleties and

differing functions of each device in

the process). Instead, the average video

post-production project can be completed

from one location just by switching

between simultaneous applications.

ANIMATION AND EFFECTS

Besides static text and graphic images,

animation capabilities are also provided

with the CVC WorkSyetem. Both 2-

dimensional and 3-dimensional animation

can be created quickly to allow greater

enhancement and effect. Imaginary and

real images can be digitally manipulated

to create the popular effects and

simulations that are common to many

present day video productions. The

quality of the animation cannot yet

replace those from dedicated high-end

systems but the compromise is offset by

the minimal effort and time necessary to

achieve results that remain pleasing and

above all, cost-effective. Once again,

the single system, single operating

environment approach provides a

tremendous amount of flexibility.

OTHER POSSIBILITIES

The CVC WorkSystem,s open-architecture

provides a great amount of

expandibility. The power of the system

is mainly accessed through additional

applications software; keeping the

necessity for extra hardware peripherals

to a minimum. Simply put, the limit to

the system's capabilities is dependant

on the available software.

Because of its personal computer nature,

other applications software exists to

perform tasks that are indirectly but

beneficially related to the video

production process: word processing,

scripting, storyboarding, database

management, desktop publishing and

accounting to name a few.

More direct applications could involve

MIDI (Musical Instrument Digital

Interface) software to help in creating

soundtracks and sound-effects for the

finished video. With the appropriate

software the video and audio aspects of

the production become a completely

synchronous process.

Quality video production should no

longer be considered an extravagance.

The techniques and processes that were

once supposedly limited to elite

organizations and people are now

accessible to all types of

professionals. The CVC WorkSystem can be

applied to many areas requiring the

benefits of! a reasonably-priced, multi-

featured computer and video work-

station.

Marketing agencies can now afford an in-

house system to present clients with

immediate ideas and recieve instant

feedback. If necessary, full commercial

video productions can even be produced

completely on-site.

Corporate training videos can become

easier and less costly to produce with a

system that does not require specially

trained operators.

Schools and Universities can now

incorporate up-to-date video

communications training into their

curriculum. Unlike previous video

systems, the expandable design will be

well protected from obsolescence.

Scientific research institutes can also

benefit from the barrage of capabilities

that the CVC WorkSystem can help make

data presentations more widely
understood.
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Of course, the CVC WorkSystem is not

proclaimed as the answer to all video

post-production needs, but it supplies

enough significant features to make a

truly integrated computer/video system a

cost-effective reality. A single

computer in a video studio can now be

integrally involved in every step of the

creative process: as a word processor

creating a script and project proposal,

as a spreadsheet creating the project

budget, as a tape synchronizer for audio

and video transports during editing, as

a database to log scenes, transcribe

dialog, and manage an edit decision

list, as an audio sequence controller

(MIDI) for electronic musical

instruments used in the soundtrack and

special effects, as a video effect

generator and character generator, and

finally as a business machine for

invoicing and accounting when the

project is finished.
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ABSTRACT

Currently most computer based simulations
rely exclusively on computer generated
graphics to create the simulation. When
training is involved, the method almost
exclusively used to display information to the
learner is text displayed on the CRT.
MICROEXPERT Systems is concentrating on
broadening the communications bandwidth
between the computer and user by employing
a novel approach to video image storage
combined with sound and voice output. An
expert system is used to combine and control
the presentation of analog video, sound, and
voice output with computer based graphics
and text.

We are currently involved in the development
of several graphics based user interfaces for
NASA, the U.S. Army, and the US. Navy. This
paper will focus on the human factors
considerations, software modules, and
hardware components being used to develop
these interfaces.

INTRODUCTION

Advances in military and aerospace technology
continue to result in increasingly complex
systems requiring quick, accurate decisions
under increased cognitive loads. The
amounts, variety, and rate of information flow
is, many times, so overwhelming that
anticipated performance benefits are not
realized (Rouse 1987).

Recent advances in both video and audio

storage technology are providing additional
resources for communications channels

between computer and user. These tools may
well contribute to potential solutions of the
problem. This article outlines an approach we
have taken in combining these tools for the
development of user interfaces, including
intelligent human-machine interfaces for
simulation based intelligent tutoring systems
(ITS).

HUMAN FACTORS

User capacities and needs have been
described as a major consideration in
designing user interfaces (Shneiderman 1987).
The use of several media devices can help to
better meet the needs and match the

capacities of the user. Described below are
several of the more important factor we have
considered in developing a multimedia
interface.

Cognitive Load. A measure of the complexity,
or difficulty of a task is the number of
resources it requires (Moray 1977). As
described by Baecker (Baecker 1987) the
cognitive toad of a task correlates with such
factors as:

• learning time
• fatigue
• stress
• proneness to error.

It is important that the interface help minimize
the cognitive load on the user. Thus, for
example, the design should consider the
different loads imposed in making menu
selections with a one, two, or three button
mouse, respectively. It may turn out that the
one-button mouse has the lowest load, since
there is no overhead in determining which
button to select. However, in the larger
context, it may turn out there is a greater
penalty in. for example, an increased number
of menus or menu selections that must be

provided.

Interference. Degradation in the performance
of one task can occur due to competition for
cognitive resources by another task during the
same time period. Problem solving requires
attentive behaviors that usually involve large
numbers of cognitive resources. As a result,
problem solving during an ongoing simulation
is highly susceptible to interference. For
example a tutor that provides text for coaching
during a simulation could easily interfere with
the simulation reducing, instead of improving,
the user's performance. In such situations an
alternate communications channel using voice

107

PRECEDING PAGE BLANK NOT FILMED __,_==(E,==_NI_N],tON_d_



output or auditory cues may provide a better
approach to prompting the learner without
interfering with their performance.

In working with a simulation based intelligent
tutoring system, there are two classes of
problems that confront the user: operational
and functional. Operational problems have to
do with the means of operating the ITS itself.
Functional problems deal with learning to
perform the tasks the tutor was designed to
teach. Operational problem solving often
interferes with functional problem solving

One objective of the user interface is to
minimize operational problem solving. All
resources expended at this level are diverted
from the functional problem for which the
computer was adopted in the first place.
Design features such as consistency,
compatibility, icon and menu design must be
considered. For example operators of certain
types of radar learn to access radar target
information by using a joystick to position a
cursor on the target and then pressing the
joystick button. We have designed a
simulation to train radar operators that not only
simulates this operation but also provides
additional information about radar symbols and
controls using a very similar procedure. If, for
example, the learner desires information about
a symbol he does not recognize on the
simulated radar display, he need only position
the cursor on the symbol, using the joystick,
and press the help button on the keyboard
This type of learning requires only slight
stimulus generalization and is therefor easily
learned by the student.

The overhead of functional problem solving
can also be reduced by careful design.
Information should be presented using
symbols, jargon, and metaphors that are, as
much a part of the users repertoire and
experience as possible. In training radar
operators we have employed two expert
systems, a scenario expert and an interface
expert. The interface expert compares the
actions of the scenario expert with the actions
of the user. When a discrepancy occurs the
interface expert provides visual or audio
coaching, during the scenario, without the
learner having to request help in any specific
way. Transcripts and recording made of radar
instructors as they trained operators were used
to design the voice output which includes
training and operation related jargon already
familiar to the trainees. The result is very
similar to the classroom training the operators
receive in which an instructor stands behind a

student and provides coaching as the student
operates the radar console.

Skill Acquisition. Simulation based training
generally focuses on skill development.
Training procedures, including help systems,
are a part of the user interface. Their design
should encourage development of skills in an
isolated, non-threatening way. It is important
that voice and sound output, for example, not
be punishincf to the learner, especially by
drawing attention to the learner from his peers.
The result is often an avoidance or aggression
response by the learner which will decrease
skill acquisition.

There is some evidence that skill is acquired
more rapidly in an isolated learning situation
(Schneider 1985). This may not hold for
specific cases and requires testing for final
validation. High-fidelity simulations are
ultimately imlc.ortant in order for the advanced
student to learn fine discriminations. However,
for the novice it is often important to reduce the
complexity of the simulation so that the student
can more easily learn to make important
preliminary discriminations. In training radar
operators, the complexity of the simulation
scenario is controlled by the interaction expert.
As the student becomes more successful at

solving the scenario correctly, the complexity is
increased by adding additional targets and
target types and by changing target vectors. If
a student has difficulty with a specific scenario,
the scenario is simplified so that important
stimuli are isolated and the student can more

easily focus on appropriate discriminations to
be learned.

Mental Models, Analogy, and Metaphor. The
underlying conceptual model of the software is
considered to be a more important factor in
user-friendliness then what is generally called
"look and feel" of the system (Liddle 1989).
The mental model which the user applies in
trying to understand and predict systems
behavior is an important consideration in the
design of the interface. Users make use of
analogy between systems components and
previously learned stimulus-response
paradigms, when operating a system. To the
extent that the user interface can be designed
using one or more carefully chosen metaphors
familiar to tile user, the interface wilt be
perceived as user-friendly. In designing the
user interface to multimedia database, in which
the user can access analog video images,
graphics, voice, sound, and text, we have
employed the metaphor of a Library. A
metaphor of a card catalog is used to specify
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the informationusedfor a databasesearch.
Following the search a graphical
representationof librarybookson a sheff,
representingthe resultsof the search,is
displayedon the screen. By pointingthe
cursorat a bookandclicking,witha mouse,
the information,be it text,sound,voice,or
image,isdisplayedtotheuser.ThoughstiTIin
the prototype stage, preliminaryuser
acceptancehasbeenverypositivesofar.

S-RCompatibility.Whena systemscause-
and-effectbehavior matchesthe user's
expectationsandpreviousexperiences,it has
good stimulus-response(S-R)compatibility.
Twomainfactorsto beconsideredarespatial
congruenceandcustom.Havinggoodspatial
congruencebetweenitemsina menuandthe
layoutof functionkeysprovidesgood S-R
compatibility.Theuse of the colorred to
indicatedangerora stopactionisanexample
ofhowcustomcanbeusedto providegoodS-

Rcompatibility.In a similartashiontheuser
interfaceshouldbedesignedto makeuseof
customsspecificto the individualsthat wilt
utilizethesystem.Throughcarefulknowledge
engineeringit is sometimespossibleto
uncovercustomspeculiarto thetargetgroup
ofusers.Totheextentthatthesecustomscan
be incorporatedinto the interfaceit will be
perceivedasuserfriendly.
INTERFACE COMPONENTS

The diagram shown in figure 1, below,
illustrates the functional modules we have used

in developing intelligent human-machine
interfaces. Each module is a unit of

replaceable code with specified inputs,
outputs, and functions to perform.
Furthermore the interface, itself, can be seen
as a module in the development of a larger
intelligent tutoring system. In this way other
groups are able to work separately on different
modules of the ITS.
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TaskAnalysis.

While not represented as a separate interface
component, a careful task analysis is essential
to the development of the other components in
the system. Intelligent Tutoring Systems
attempt to capture and explicitly represent the
knowledge that constitutes the expertise being
taught. Our knowledge engineering efforts
have focused on a task analysis that not only
identifies the knowledge components to be
represented, but creates a curriculum structure
that associates knowledge components with
each other and with the goals of the
instruction.

During the knowledge engineering phase of
development complex, high-level tasks are
identified and decomposed into mid-level and
then tow-level unit tasks. For each unit task it is

important to identify a measurable behavior
associated with the task, the stimulus
conditions upon which that behavioral
response should be made, and the heuristics
that describe the relationships between stimuli
and responses. The process is an adaption of
the goal-lattice structure described by Lesgold
(Lesgold 1988). Each high-level task serves as
the root node of a tree. Simple lessons are
designed to teach the unit tasks of each tree.
Many of the mid-level and unit tasks identified
in one task tree are also common to other,
separate, task trees. Figure 2, below, shows
this architecture symbolically.

HIGH-LEVEL I ] ] !TAsks , I ] .....

MID-LEVEL

TASKS

.......CC.C

l

1 [

Figure 2

Task AnaLysis
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Theresultingtasktreesandinterconnections
makeupacurricularstructurefortheITSwhich
is accessedin the interactionexpert.Tasks
canbe taughtusinga depth-firstsearch,a
breadth-firstsearch,or both. Researchis
beingcarriedout to determine,amongother
things,underwhatconditiona specificsearch
shouldbecarriedout.

User Input.

Prototype development has been carried out
on a Symbolics LISP machine, DEC MicroVax.
User input has been limited to a mouse
pointing device and keyboard. We are
currently developing a new type of wireless
pointing device to be implemented when
porting the interface to a PC. We are also
considering voice input devices for entering
commands on the PC.

Event Monitor.

The event monitor measures user and
simulation event actions over time. Multiple
timing functions are available to measure the
elapse time between a task stimulus event and
a specific user response (task time), between
the start of sequential tasks (intratask time), to
measure input from the keyboard and mouse,
to determine the current task to be performed,
the current position of simulation related
objects on the display, and which object the
cursor is pointing to at any given moment
Information measured by the event monitor is
then stored in the user model.

User Model.

The user model is used to store task
performance related data about the user. For
each task performed, the time required by the
user to complete the task is stored. The
sequence of user performed tasks is also
stored and used to calculate a task efficiency
and task similarity (compared to an expert)
rating. The time period between presentation
of successive task stimulus conditions is also
measured and provides an indication of the
cognitive load on the user. This provides a
user-specific fact base that is used by the
interaction expert to adapt to individual user
requirements and needs.

Also stored in the user model is data related to

the users presentation preferences. As is
described below, information can be presented
to the student in a variety of modes, textual,
graphical, voice, and sound. The user model is
designed to measure the users preference for

a specific mode of presentation as defined by
his performance following the presentation.

The users teaching history is also tracked in
the user model. Thus the tasks that have been
taught, the presentation modes that have been
used, the students task performance, and his
presentation preferences are stored here and
available to the interaction expert.

Interaction Expert.

The interaction expert is the interface rule base.
Rules are designed to compare the users task
performance with that of an expert. An expert
system, designed as a separate component of
the ITS (not shown), generates expert solutions
that are available to the interface expert. The
expert's solution is compared with the users
solution to determine the tasks to be taught.
By traversing the curriculum lattice the
interaction expert determines related tasks that
should be taught as well as different paths
(viewpoints) from which to teach. The user
model is then consulted to determine what

paths have not been previously attempted for
that user and what presentation mode should
be tried

Instructional Generator.

The instructional generator is primarily a
database of instructional components
designed to teach specific tasks. Instructional
modules are designed to provide several
instructional strategies; discovery learning,
coaching, and Socratic dialog. Thus, several
instructional modules are available for each
task. Modules are also designed to differ in
their emphasis of a specific presentation
media. For example, coaching is available for
a given task by presenting text on the video
display or through voice output using a text-to-
speech converter.

Presentation Generator.

The presentation generator consists of the
media devices used to present information
visually or auditorily along with software used
to control these devices and integrate
components.

Visual Channel. Both analog and digital, bit-
mapped video images are available for display
to the user. Currently different video display
terminals are used for each. We are

experimenting with both video digitizing boards
and video mixers to combine both types of

images onto one display.
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Video. A unique video storage device, the
VIEWBOX 2000, is being used to capture and
display analog, RS-170, video images. The
device uses a standard 20-Mbyte hard disk
with a modified controller to store over 2400
RS-170 video images. Random access times
are approximately 200 msec and sequential
access times are under 100 msec. making a
"pseudo-animation" possible. A standard video
camera is used to capture images. Software
drivers in the presentation generator are used
to control the device over the computers RS
232 port.

Graphics. Graphic displays are highly
machine dependant. Interfaces are currently
being designed on both Symbolics and DEC

MicroVax computers, using monochrome
graphics, and on PC's ustng EGA color
graphics. Currently simulation are graphics
based and the VlEWBOX is used to display
visual information that does not lend itself wel!

to graphical display due to processing
requirements and capabilities. We are
experimenting with using the VlEWBOX to
provide background scenery overlayed with
graphics in the hopes of combining both in the
future.

Symbology. Icons and symbols are separate
graphical components the interface uses to
help the learner make important
discriminations during the simulation
Simulations are designed with varying
complexities. Novices are provides simulations
of very low complexity with ample use of
symbols, such as pointers. While it is generally
agreed that high-fidelity simulations are
needed, it is possible too provide to much
fidelity early in the learning process.

Text. Under the control of the instructional
generator text can be displayed in a window on
the video display or sent to a text-to-speech
converter and presented as speech. In the
later case the presentation generator formats
the text string to control pitch, rate, and other
parameters.

Audio Channel

Producing Speech Electronically.
Generation of speech and sound (earcon)
output from a computer requires special
hardware components. Three major
techniques for production of speech have
evolved over the years: formant (resonant
frequency) synthesis; linear predictive coding;
and waveform sampling. Most commercial

text-to-speech devices use one of the first two
because the,./ require smaller storage and
slower data rates. However with as computer
memory continues to decrease in cost,
computer systems such as the Atari and
Apple's Macintosh are imbedding the
hardware ancl software needed to sample and
reproduce waveforms.

Synthetic Speech. The automatic conversion
of text to synthetic speech has advanced
remarkably in the last several years. A number
of commercial devices are now available,
ranging in cost from approximately $100 up to
$35000. Progress in this area has resulted from
advances in linguistic theory, acoustic-phonetic
characterization of English sound patterns,
perceptual psychology, mathematical modeling
of speech production, and computer hardware
design (Klatt 1987) Never-the-less a number
of scientific problems remain that prevent
current systems from achieving the goal of
completely human-sounding speech.

The quality of voice output improves greatly in
devices costing over $3000 (Kaplan et a11987).
In the $3000 - $4000 price range two text-to-
speech devices stand out. Originated by
Dennis H. Klatt, speech synthesis expert at
MIT, DECtalk by Digital Equipment Co. has a
broad range of voices including a child's voice
and a female voice. In evaluations by
Nusbaum et al (1984) listeners understood
synthetic speech produced by DECtalk 97.7%
of the time as compared to 99.4% for human
speech. A rwal system also originated by Klatt,
the Prose 2000 by Speech Plus Inc. has similar
quality but offers only a male voice and is
slightly less e>,pensive. Studies by Logan et al.
(1986) indicate listeners have an error rate of
6% listening to the Prose 2000 - 3.0 compared
to 1% error in understanding natural speech.
Both devices can be controlled thorough the
computers RS-232 Serial Port and require a
data rate of approximately 100 bits, based on a
typical rate of 12 phonemes per second.

We are currently using the Prose 2000 for text-
to-speech conversion in several of our
interface A major advantage to these type of
devices is the ability to use variables to store
speech output. The major drawback of these
devices is that they are limited in their ability to
produce other complex sounds that would be
useful for generating auditory cues.

Voice Sampling. A second method of
producing digitized voice output is by sampling
the waveform of human speech. Waveform
sampling uses a common analog-to-digital
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conversionandrequiresabout64000bitsper
secondfor uncompressedspeech(8000
samplespersecondtocaptureupto4000Hz,
multipliedby8 bitspersample).Thusstorage
requirementswouldbe 8K/second.Usinga
dedicatedmicrocomputercontaininga 20
megabytefixed disk approximately2500
secondsofspeechcouldbedigitallyrecorded
usingthis method.Usingdatacompression
techniques,this numbercouldbe doubled.
The resultsare a digitalrecordingof the
speechthat is almostindistinguishablefrom
theoriginalsource.

We arecurrentlyusingan AntexModelVP
620E,PCcompatibledigitalaudioprocessor
(AntexElectronics,Gardena,CA)to provide
digitalaudioinsomeinterfaces.Whilethistype
of deviceeliminatestheabilityto easilystore
speechcomponentsas variables,the high
qualitysoundmakesthedeviceidealinmany
teachingsituationand wheresophisticated
auditorycuesaredesired.

Earcons. Sound is increasingly being used to
convey information in computer interfaces
The term Earcon (Sumikawa 1985) has been
used to define sounds that serve as the

auditory equivalent of Icons. Similar to voice
generation, earcons can be produced by
sampling specific sounds or synthesizing
sounds with a tone generator. Gaver (1986)
has classified auditory icons into three groups:
1) symbolic, such as telephone bells and
sirens, 2) nomic, in which the sound is a
physically caused by the source such as the
sound arriving mail makes in a mailbox, and 3)
metaphorical such as a change of pitch used
to represent falling or a hissing sound to
represent a snake. Symbolic sounds are,
perhaps, easiest to produce on most
computers since they do not require the ability
to sample sounds. However they generally
require the greatest amount of learning on the
part of the user. For this reason they should
be used judiciously. Symbolic sounds have
been shown to be effective when used as an

alerting cue prior to emergency messages
produced by synthesized voice (Hakkinen
1984). Anecdotal evidence from our current
research supports these finding but also
suggests that overuse of sound stimuli results
in confusion of the user. We are now

beginning to experiment with sampled sounds
to produce nomic and metaphorical earcons
which should require less learning by the user.

CONCLUSION

A generic intelligent multimedia interface has
been described. While research is still ongoing
in many cases we have reach so interesting
preliminary conclusions. We originally believed
that selecting different presentation modes,
e.g. voice or text, would be useful for adapting
to specific types of learners. However results
so far suggest that user performance improves
much quicker when several modes, e.g. voice
and text, are combined. This makes sense in

light of the fact that the learner then comes
under multiple stimulus controls.

A second factor, eluded to above, that became
immediately noticeable was that earcons and
auditory cues can easily be over used and
become distracting to the user. However,
when designed carefully, and used fastidiously,
they can be of significant value in gaining the
learners attention and improving his
performance.
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IU inch diagonal 64()X400 pixel, hacklit [+('[)

display. The interface tu external data is ,.ia R5.;-
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graphics.
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tral]sferred in rc'astmable time.

o ]llpUt ltl lhc sv:-,lc'lYi is Ihlt)tL_h lhc
keyhc)ard only. No illOtlse, trHck h'<ltl,
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ftln'ctioll keys and Illnell_()llics.
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As a prelude to hLJilding :in Man Machine
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several design trips to JSC tn talk it) the large
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interest in Shuttle disphtys. Personnel who
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illput. In s(HI]e cttses, rules of display design

yielded it+ LISttC)II:itll e×pectations.

Our invcstigatitm into design preferences and

rcquiren_cnts lad In the In[hr, ving observations:

c_ i\MI t+tlauts l)rcici graphical

iet+l eset/latit+n ot data. Three
dimcnsi(ln;ll graphic mtidcls that depict
t)riClllHllC)ll HI-C lilt)re meaningful to the

LlSll-t)ll;itltS ttlan tlUllleric d{it_i. Engineers

preler I(i see llUnleric and tabular data,

:illd cl(I ll()t see the grapi_ics as very

nlc;iningful.

c+ Numerical data should be disphiyed

t)lli,,, to the accuracy that is relewmt..lust
because data may be awiilable to three

places alter the decimal ptfint, if the crew

t11cnlt'_¢r can only affect a change in the

d:ttu tee the nearest integer, that is the only

value necessary t(_ disphiy. The

'insigifilic;int" s]gifiticnnl figures only
CltlltL'r the screen.

t) Althcmgh troth)fruity of nunlerical data
m/ll<es fnr ;i symmetrically pleasing

disphiy, cre_ memhers prefer receiving

the c."_;i,.+1d;il;i ;is required.

c_ Critical data, lk}i- example range and

r;inge I-Hie ill t)tlr applicatitm, can he

cmphit_,ized hy disphlying them m large

ilull]bers t)ii the graphic screen in head-

Lip clist)hiy fashion. Not t)iliy d()cs this

permit the ere',.*, member t() easily find

nun+eli: data with{+ut changing the
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graphic view, but allmvs other crew
members to monitor the vahles O\CF lhe

shoulder of the prime user.

o Critical information that appear:, as _

demon or warning should require p_sitivc
ccmfirmation by crew n]embers u.',ing lhc
system.

o Displays shouM be stuffed with as much
information as possible to avoid changing
display screens, ttov,,cver, astron_ttltS
should be able to declutter the screen

during certain operations of the dispNiE.

o Information displayed graphically on
the screen should be phlced in multiple c_r
selectable frames (H retcrence.

Astronauts prefer that mosl gr;_phic
displays be in shultle coordinale
orientation. For proximity and docking
all readouts should he 'fly-ta' oriented.

This means that the goal of the display
should be to put the target in the middle
of the crosshairs, or zero {)tit all the
numerical data.

o A conflict arises between generic

graphic displays, and mission spccilic
displays. Generic displays t'ul\'c thc
advantage of providing ease of training.
standardization, and reusahilitv c,l
software. Graphics that pertain to ;i single
inission requirements can prm,'ide a nluch

greater level of detail and specificity to the
graphics, and impart more information In
the crew member. In other wc_rds, ihcrc

are no absolutes for screen design in n.x_l

space applications.

GRAPttlCS APPLICATION: lASER
DOCKING SENSOR

The above considerations were incorpor_ted into
the design of the graphic interface to the I.I)S.
The purpose of the LDS is to innprove
measurement accuracy over the current docking
methods using the I<U band radar, tbc ('re_
Optical Alignment Sight (COAS) and exIcrn_ll

telemetry. The system goal is to nchic\c s_it
docking with a target, reduce dncking time
requirements, and conserxe fucI \_ hilt

maintaining safety.

The I.DS measures range, azimt,th, elevation,
r_HI, pitch, yaw _llld _issociated rates to a docking
l_trgcl. To achieve accuracy over a dynamic
ra_ngc, file LDS design cal]s for a complex

inlcgration ol several measurement

systems.including the Distance Measuring
Equipment subsystem, which is a laser radar with
multiple t_mes to me:_sure the range and a
ck_ppler to measure range rate and the Long

Range Bearing System (LRBS), consisting of an
illuminatttr and canlera to capture a vide() image

of the target for determining bearing beyond 80
feet, Short Range Bearing System (SRBS) for
calcul',lting bearing and attitude, and several optic

lind nliclOl?rocessor subsystems.

The IDS conlnlunicates with the PGSC via an

RS-232C link. It outputs fixed formatted data
Dickers :il :l I tlZ update rate. The PGSC can
send to the LDSthe following mode commands:
STANDBY, SEARCH, BREAK TRACK, SELF
TEST, CALIBRATE, and SEND VIDEO.

Normally the LDS operates autonomously
without inptit fl-onl the PGSC. The LDS also
sends the data packet to the Payload Data

Intertace (PDI). The I.DS connects to the aft
flighl deck switch panel via panel discrete mode

sclecti(m Jilt)Lit.

PGSC DISPLAY I)ESCR1PTION

The PGSC runs MICROEXPERT's realtime

I.DSA program. The LDSA has four main
functi(ms:

o Ommmnication with LDS

o Display of the LDS data
_ I.I)S data analysis using expert systems

c)Sutellitc target recognition.

The I.DSA MMI presents the I.DS data in
gr:lphical and tM_ulm- form with critical data
enlm-gcd. The relutivc position of the target is

presemed from nlore than one perspective and
coord[ilate system. The inenti enables user input.

The LDSA expert system checks the data fl)r

validity, trends and dangerous situations. The
target recc_gnilit)n stfftware validates the target
and c;llcul:lles its attitude.

MI('I_,()IIXPERI designed two interfaces for
this system: ,,',he mission specitic, the other a
ecncric I)rnximity cq)ciaticms display. P,oth
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MMI's were designed around the km_wlcdgc

gained from on site intervicws.
MICROEXPERT's experience in complex
displays for tutoring, and general principals of

display and expert systern design.

The mission specific interface consisls of several

full screen graphical views with scales and
numerical readouts. These windows are:

o The front view from the perspective of
the LDS {see Appendix A) displaying a
three dimensional wire|tame model of the

target vehicle. The model is scalcd,
transformed and oriented in roll, pitch alld

yaw from the LDS measurement. The
model appears in real time as the satellite
would to a mission speci;llist ol_servmg it

through the COAS.

o The side view depicting the position ot

the shuttle and the target vehicle from n
point on the azimuth axis.

o The readout screen, listing all the data,
sensor status and a history of the L,DS

status and mode changes.

The generic !nterface (see Appendix A) consisls
of one mare display screen with six mnin

windows. In the graphics windows icons portray
the relative positions of the vehicle.,,. The largel
icon always includes a halo to indicate the
deadband. Scales to the side of the graphics
indicate the measurement, its rale, and direclion

of change. The windows are:

o Side view indicating the Z and X
coordinates of the target in grnphic_ ;rod a
linear scale.

o Top view graphing the target rehlti_e to
the shuttle in X and Y as seen from abo_c

the shuttle (-Z). The fieM _lview_l the
LDS is outlined by a dashed box.

o Sensor data listing measured
parameters (range az., el., etc.) sent from
the LDS in a columnar readout. The

values are converted to the cartcs[Hll

coordinate system ot the shuttle nnd

displayed.

o P/L Relative displaying target attitude
values in columnar readouts with

corresponding rate values.

o LDS FOV plotting the target in the
LDS's field of view.

o Slat qs and Warning indicating the mode

of the LDS and suggestions from the

expert system.

CONCLUSIONS

Designing aninlati{.}tl graphic intertaces fl)r space
applications creates considerations that may
impact the design of the interface and disallow
the current stale-of-the-art in color animation

graphics. In spite of this, graphic interfaces can
be applied to onboard, real|tree software

applications with strongly positive results.

The 80386 processor in the PGSC is capable o
running a variety of sophisticated programs that
could aid Orbiter crews. The terminate-and-stay-

resident display, interface software, and data
analysis I_,)utIne_, in the PGSC run
"simultaneou.,;ly" by servicing interrupts to share
processor time. D]sphtyingmultiple 2Dviews, or
3D wirefranlcs can provide a graphical

representation, while onfitting detail prohibited
on small machines.

On board graphic software fl_r data
representation is rehttively new to the Shuttle

progr:mL Animaled graphic representation o
data brings n more intuitive understanding of the
data to crcxv menlbcrs, and should be carried into

illO1-c onboard SOID.v}tIC systeMS. Integrating
crcv..' 111emher desires into the display design

creates an etlicient, tailored display that is will
provide graphics to better aid the crew. Because
different players have different needs and display

interests, graphics standards shot, ld be created
|or the PGSC and adapted for all payload
support software. This will improve and reduce

lhe cost of display design, increase acceptability,
and enhance training.
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Appendix R LDS_ Display Screens OF POOR QUA,!.ITY
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ABSTRACT

Over the past five years, the Flight Dynamics

Division of the National Aeronautics and Space

Ad. ministration's (NASA's) Goddard Space Flight

Center has incorporated computer graphics tech-

nology into its operational environment. In an at-

tempt to increase the effectiveness and productivity

of the Division, computer graphics software systems

have been developed that display spacecraft track-

ing and telemetry data in 2-d and 3-d graphic for-

mats that are more comprehensible than the alpha-

numeric tables of the past. These systems vary in

functionality from real-time mission monitoring

systems, to mission planning utilities, to system de-

velopment tools. This paper discusses the capabili-

ties and architecture of these systems.

I. INTRODUCTION

Since the mid 1960s, Flight Dynamics Division per-

sonnel have been performing spacecraft orbit and

attitude determination and a variety of mission

planning, monitoring and analysis functions. These

functions have often been based on the analysis of

large volumes of numerical data. These data repre-

sent a wide variety and range of geometric values,

some as easily interpretable as the position of the
sun in a sun sensor's field-of-view, others as ab-

stract as spacecraft attitude expressed in quater-
nions.

In the past, operators and analysts have been pre-
sented these data values via monochrome screens of

alphanumeric tables. Today these displays are now

2-d and 3-d color graphic representations of the

data. In an ongoing effort to increase the efficien-

cy and effectiveness of this working environment,

the Flight Dynamics Division has invested in an en-

deavor to utilize computer graphics technology as a

means to present flight dynamics data in a more

comprehensible format.

This paper discusses how graphics technology has

been applied to the flight dynamics environment.

Presented in detail are graphics software systems

that are currently in use in the Flight Dynamics

Operations Area. These systems have been separated

into three distinct categories. The first, real-lime

mission monitoring systems, encompasses distribut-

ed processing software that receives and graphical-

ly displays real-time spacecraft telemetry data.

These systems are used for ensuring the health

and safety of a spacecraft and verifying the quality

of experiment data. The second category, non-real-

time planning tools, includes passive standalone

software systems that are used for various mission

planning and analysis activities. The final catego-

ry, system development tools, contains high level

subroutine packages used by Division programmers

to create frequently incorporated graphical displays
in a cost effective manner.

2. MISSION MONITORING SYSTEMS

The Flight Dynamics operations personnel are often

required to interpret tracking and telemetry data as

it is received on the ground. The interpretation of

the data is necessary to ensure the integrity of ex-

periment data, verify attitude maneuvers, and mon-

itor the health and safety of a spacecraft. Computer

graphics systems have been applied to four specific

applications to assist analysts with this interpreta-

tion process. These applications are further dis-
cussed in this section.

2.1 TCOPS WORLD MAP

2.1.1 BACKGROUND

One of the most common real-time analysis problems

faced by Flight Dynamics operation personnel is the

determination of a spacecraft's position above the
earth and whether that location is within communi-

cation range of ground or satellite-based antenna.

To help visualize this problem, a world map display

was incorporated into the Trajectory Computations

and Orbital Products System (TCOPS), the Flight

Dynamics Division's institutional orbit determina-

tion system.

2.1.2 CAPABILITIES

The underlying principal for the world map display

is to generate a 2-d Cartesian projection of the earth

then overlay orbit tracks of various spacecraft onto

this projection. The orbit tracks are propagated and
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the current location of the spacecraft is updated as

real-time position data is predicted analytically.
('ommunication zones are drawn as a set of contours

that take into account any interference that may be

due to obstacles blocking either ground or space-

based antenna These obstacles are both tangible

(e,g,, mountains or buildings) and abstract (e.g., at-

mospheric interference). The world map display

also includes electromagnetic radiation contours, a

,,unrise/sunset terminator line and sun icon. The

system also predicts shadow constraints and possible
communication obstruction due to solar

interference (see Figure I) [41.

2.1. _, ARCItI'I'ECTURE

The TCOPS world map incorporates a distributed pro-

cessing approach (see Figure 2). Spacecraft orbit

vectors are retrieved from spacecraft ephemeris

files by a FORTRAN program (WMDRV) which is exe-

cuted on a National Advanced Systems (NAS) 8063

mainframe computer under the MVS operating

system. The orbit vectors are then transmitted over

a bisynchronous 9600 baud communications line to

an IBM PC/AT compatible workstation.

TCOPS WORLD MAP ARCHITECTURE

spacec raft
telemetry_

i. /

NAS 8063

l_ TCOPS !

; I
WMD.Vi

I

spacecraft I PC/A T

position I ,

\\ __ 1WMAP i

Figure 2.

The PC is configured with a Digital Communications

A_sociates (DCA) IRMA communications board and

an ATI Technologies, Inc. Enhanced Graphics
Adapter I EGA) Wonder board (resolution of 640 X 350

pixels) This specific version of the EGA board is

compatible with the closed circuit television (CCTV)

system at the Goddard Space Flight Center, allowing

the image to be transmitted to multiple control

centers. A FORTRAN program (WMAP) on the PC, ex-

ecuted under DOS, then generates and continually

updates the world map display using an orbit propa-

gator to predict the location of the spacecraft [4].

All text and graphics are produced using the Media

('ybernetics, Inc tlA!A) graphics package.

2.2 3-D M()N

22! RACKGROUND

In contrast to the simplicity of the world map system

and its related analytical support is the problem of

verifying, in real-time, such items as: relative posi-

tioll and orientation of a spacecraft (and its append-

ages) to celestial bodies; objects and targets along an

instrument's boresight; and solar lighting
constraints.

To alleviate the time consuming and difficult task of

determining ,'_uch alignments by examining num-

bers, the Flight Dynamics/Space Transportation

System 3-D Monitoring System (3-D Mort) was devel-

oped to display real-time spacecraft data with some

degree of photographic realism. 3-D Mort presents

a 3-d model representation of the Space Shuttle, its

payloads and surrounding environment using near

real-time Shuttle telemetry (received every two to

five seconds) to compute the orbit and attitude of the

models [8]. The system can also accept other satellite

telemetry streams for spacecraft other than the
Shuttle.

2.2.2 CAPABILITIES

The primary capability of the 3-D Mon system is to

generate realistic 3-d images of the Shuttle, the

Remote Manipulator System (RMS), and the Shuttle's

payloads based on Shuttle telemetry data. These

objects are shown at their relative sizes,

orientations, and positions. All of these objects can

be displayed as solid, flat shaded objects, with

shading based on light sources located at the sun

and/or viewpoint. The viewpoint light source

prevents objects from appearing as silhouettes

when the sun and viewpoint are positioned on

opposite sides of the model. The objects also can be

depicted in a wireframe representation if system

performance needs to be increased or if a

transparent object provides an improved analytical

view [2]. The capability for Gouraud shading is

currently being incorporated.

The next capability of 3-D Mon is to merge these

spacecraft images with accurate representations of

the surrounding environment. The earth is

displayed in its accurately scaled size and position

and is rotated appropriately. Land masses can be

displayed as filled or outlined, with or without

day/night shading. Interference zone contours and

longitude/latitude lines also can be overlaid onto the

earth's surface. Images of the celestial bodies (sun,

moon, Mars, etc.) and other celestial objects

(galaxies, quasars, etc.) are represented as 2-d icons

or alphanumeric characters, respectively, at their

relative positions. Celestial body positions are based

on ephemeris files that precisely predict their

location. The sun and moon icons also are displayed

in their properly scaled size, with lunar phases (full

moon, crescent moon, etc.) displayed upon request.

Stars are rendered as groups of pixels whose sizes

are varied proportionally to the brightness of the

star. Vectors may be added that represent the

direciion of rLhe sun, earth, targets, spacecraft

velocity, etc. to provide a relative indication of

motion with respect to the universe [2]. Figures 3

and 4 are images generated by the 3-D Mon system

that merge both spacecraft and environmental data.

Interactive capabilities for analysts are also provid-

ed by the 3-D Mon system. An analyst can toggle

any of the aforementioned system configurations,

whether for system performance or analytical

considerations. The analyst can specify the current
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view in a variety of ways, which include predefined

views (RMS wrist camera view, rear Shuttle cockpit
window view, communications satellite view, etc.) or

a user-specified view where the user can select the

viewpoint and point of interest. Analytical infor-

mation is provided to the operator for any object

selected interactively. Playback modes are provided

for analysts to review previous scenarios in either a

slow motion or frame-by-frame (data record-by-data

record) mode [6].

2.2.3 ARCHITECTURE

To achieve the required image update rates, several

key design concepts were incorporated in both
hardware and software. The 3-D Mon system is a

distributed processing system that consists of a

FORTRAN program executed on a NAS 8063 computer

under the MVS operating system and a set of C

programs executed on a Silicon Graphics IRIS 4D/60

Turbo workstation under the UNIX System V

operating system. (See Figure 5.) The mainframe

program - the Data Acquisition and Transmission

(DAT) program - acquires the spacecraft telemetry

and environmental data and strips out or processes

key parameters necessary to generate the graphics

displays. The program then transmits these

parameters to the IRIS workstation over an

asynchronous 2400 baud line. The IRIS software

receives the data from the mainframe computer and

then generates the display using calls to IRIS

Graphics Library routines. User interaction is

conducted with either a mouse to control pop-up

menus or a dial box to facilitate zooming, panning,

rotating and trucking of the images [2].

3-D MON ARCHITECTURE

spacecraft
telemetry

,//

AlAS 8063

_ spacecraft updates,environmental updates

Figure 5.

The IRIS-resident software consists of three major

subtasks that execute as concurrent UNIX processes -

communications (COM), user interface (UI) and dis-

play generation (DG). These tasks are monitored by

a parent task (DRI) and communicate with each
other via UNIX pipes. The multitasking approach

allows data receipt and display updating to occur

simultaneously. This approach also allows the

screen to be updated while a user interactively

selects system options on a set of pop-up menus [2].

A simple 2-d version of 3-D Mon also exists at the

Goddard Space Flight Center and is referred to as the

2-D Graphics Monitoring System (2DGMS). Modeled

after another similar 2-d system in use at the

Johnson Space Center, 2DGMS provides three pre-

defined views along the Shuttle's x, y and z axes.

This system has an architecture similar to the TCOPS

world map system (residing on a PC/AT) and is exe-

cuted simultaneously with 3-D Mort to provide addi-

tional visual support if needed.

2.3 PAYLOADS MM

2.3.1 BACKGROUND

Under NASA's Shuttle-Attached Payloads Program,

government organizations and educational

institutions can place scientific experiments in the

cargo bay of the Space Shuttle [10]. Associated with

these experiments are several constraints affecting

the safety of the instrument and also the integrity

of the data collected. Examples of such constraints

are: no oxygen molecules can impact an instrument

to avoid damage to its crystal lining; no data can be

collected while the earth is occulting an instru-

ment's field of view to avoid erroneous data values;

and no ultraviolet light can enter an instrument's

field of view to avoid damage to spectrometers [9].

The problem of monitoring all of these constraints

simultaneously in real-time prompted the need for

the Attached-Shuttle Payloads Mission Monitoring

System (PAYLOADS MM).

2.3.2 CAPABILITIES

The PAYLOADS MM system generates six types of 2-d

displays that depict the instrument environment.

These displays are used to determine which objects,

either real (sun, moon, etc.) or abstract (radiation

regions, Shuttle velocity vector, etc.), are within the
field of view of the instrument or are causing

interference between an antenna and a

communications satellite. Unlike the previously

mentioned 3-D Mon system, photographic realism

does not make a significant contribution to the

analysis of such constraints, therefore 2-d rather

than 3-d images are sufficient. Figures 6 and 7

present two types of displays generated by the

PAYLOADS MM system.

Similar to the functionality of the 3-D Mon system,

orbit and attitude of the Shuttle model are derived

from near real-time Shuttle telemetry data.

Additional payload telemetry streams are also

captured and used for detailed information about the

configuration of the instrument. The telemetry data

are normally received at time intervals varying

from two to 30 seconds [9]. Environmental data are

retrieved from ephemeris files or computed by

highly accurate analytical routines on an as needed
basis.

The six types of displays can be cycled through, and

simultaneously updated on up to six graphics

devices. This capability allows all six displays to be

viewed concurrently or one display to be configured

in multiple ways. The dwell time for each display

can be modified interactively or the display can be
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suppresscd entirely from the cycle. Other

interactive capabilities include: the selection of an

object to obtain additional information on that ob-

ject; the selection of multiple objects for

computation of angular separation; and the ability

to zoom in on the image based on a user-defined

outline.

2.3.3 ARCHITECTURE

The first design of the PAYLOADS MM system, a

mainframe based design, encountered serious per-

formance problems due to the number of graphics

devices used and the large amount of graphics pro-

cessing needed for each device. To eliminate the

performance problems, a distributed processing

approach similar to the 3-D Mon and TCOPS systems

was used (see Figure 8). Spacecraft and payload

telemetry data are retrieved and processed by a

FORTRAN computations program (COMP) executing

on the NAS mainframe computer. Parameters

necessary to generate the displays are then

computed and written in real-time to an interface

dataset (IDS). These parameters are then accessed

by a communications program (COM) that transmits

the data to an IBM PC/AT compatible workstation

(configured with IRMA and EGA boards) using the

same communications protocol incorporated in the

TCOPS system. Up to eight sets of communications

programs with corresponding PC workstations can

be operating simultaneously (see [1]). Three

FORTRAN subsystem programs reside on the

workstations and are executed under the DOS

operating system. The three programs

Initialization (INIT), User Interface (UI), and

Display Manager (DM) - were designed as three

separate executables to avoid memory limitations [7].

PAYLOADS MM ARCHITECTURE

spacecraft NAS 8063
telemetry

environmental data

Figure 8.

The UI subsystem is first executed to allow users to

initialize colors, image dwell times, etc. Next, the

INIT subsystem is executed to graphically generate

display skeletons that contain static textual and

graphic information such as borders, coordinate

grids and text legends. The display skeletons are

saved to a Random Access Memory (RAM) drive for

fast retrieval/access times. The DM subsystem is

then invoked to process the most current data

record sent from the mainframe and to control the

generation of all displays. When a display is to be

refreshed, the DM reads in the specific display

skeleton and generates all the dynamic graphics

and text onto the skeleton. The image is then

displayed via a double buffering algorithm to

provide an animation effect [7]. All graphics and

text displays are generated using the Media

Cybernetics, Inc. HALO graphics package. All user

interface screens are developed using the West

Chester Group Screen Generator Package.

As a result of this alternative architecture

approach, remote usage of the system is now

possible. Users who do not have access to a

bisynchronous communications line directly

connected to the NAS computer can run the DCA

IRMA Remote software emulator package. This

package emulates the IRMA hardware and

communications protocol and converts the

transmission to asynchronous messages that can be

transmitted or received over a normal telephone
line via HAYES V-series Smartmodem 9600 modems.

2.4 HUD

2.4.1 BACKGROUND

The Attitude Heads-Up Display (HUD) is a near real-

time system that varies from those systems men-

tioned previously in this paper. Instead of using

spacecraft data to produce images of the spacecraft

in its surrounding environment, HUD attempts to

allow analysts to see the spacecraft and its environ-

ment from the spacecraft navigator's perspective.

This perspective decreases the difficulty of deter-

mining how a spacecraft is moving, what objects

sensors are viewing and how the spacecraft's hard-

ware is reacting during a maneuver. For example,

data received from a sensor that is scanning the

celestial sky are displayed in a window that corre-

sponds to that sensor's field of view. Data received

from an actuator are displayed in a format that
indicates the level at which the actuator is

operating and how safely it is functioning.

2.4.2 CAPABILITIES

The HUD system displays one graphics image that is

updated every time a spacecraft telemetry record is

received. Depending upon the spacecraft and its

complement of sensors and actuators, the updates
can be received as often as 1/8th of a second to

every 10 seconds. The graphics image is configured

similarly to the dashboard or heads-up display

generated by aircraft flight simulators. (See Figure

9.)

Sensors that track solar system objects (sun sensors)

and stars (fixed head star trackers) are shown as

windows that display the object as it is viewed by the

spacecraft in its appropriate location. Analysts can

then see if the star trackers are locking in on a star.

Thrusters are displayed as a series of lights aligned

in the same configuration as they exist on the
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spacecraft. The lights are "turned on" when the

thrusters are being fired. Sensors and actuators

whose excessive operation can be hazardous to the

spacecraft's health are displayed as various bars and

potentiometers. The colors of the bars change as

their operation reaches or exceeds safety levels.

"rhe color green indicates a safe level of operation;

yellow indicates a warning that the level of

operation is approaching the safety limit; and red

indicates an unsafe level of operation. An attitude

directional indicator, similar to those found in

airplanes, shows the orientation of the spacecraft

with respect to an inertially fixed coordinate system.

2.4.3 ARCHITECTURE

The HUD system is currently in a prototype phase.

Eventually a distributed processing architecture
similar to that used in the PAYLOADS MM system will

be incorporated into the HUD system. To date, only

the PC graphics program has been developed.

3. MISSION PLANNING TOOLS

Flight Dynamics Division analysts are responsible

for determining various mission constraints and

timelines as part of their premission planning ac-

tivities. Often, this planning requires the study of

environment and spacecraft parameters over a

given period of time. In the past, this information

has been generated in tabular form as records that
are time incremented and contain the data as a se-

ries of numbers and flags. Although these data are

highly accurate, the presentation format makes

quick analysis of trends and time-oriented parame-
ters difficult. To assist with these types of mission

planning activities, two computer graphics applica-

tions have been developed and are described below.

3.1 MPGT

3.1.1BACKGROUND

Prior to the launch of a satellite or a Shuttle- at-

tached payload, the Flight Dynamics Division per-

forms several analytical studies that are used to opti-

mize the data collection time for a mission. These

studies compute numerical values that contain such
statistics as: the amount of Tracking Data and Relay

Satellite System (TDRSS) contact time per orbit; the

number of orbits per day that pass through a given

radiation region; and the percentage of time in sun-

light of a given orbit. As a utility to assist analysts
with quick analysis of such details, the Mission

Planning Graphical Tool (MPGT) was developed.

MPGT also provides analysts with a means to produce

a graphical picture of the overall spacecraft envi-
ronment. From this information alternate orbit se-

lections that may better fulfill the mission objec-

tives can be more easily chosen for further investi-

gation.

3.1.2 CAPABILITIES

MPGT produces 2-d and 3-d plots of the earth with

spacecraft and environmental data presented as

overlays. These overlays include: spacecraft orbit

tracks, ground station antenna masks, TDRSS com-
munication contours, interference zone contours,

earth and spacecraft sunrise/set terminator lines,

solar and lunar ephemeris, a star chart, and an

ecliptic coordinate grid. Figures 10 and 11 are imag-

es generated by the MPGT system.

All overlays are designed to be mission generic. For

instance, communication zone contours and space-

craft terminators are generated analytically depen-

dent upon the altitude of the spacecraft.

Interference zone contours are specified through

text-edited data files that can be altered to reflect

mission specific electromagnetic contamination re-

gions. Up to six separate spacecraft orbit tracks can

be specified via Keplerian or Cartesian state vectors.

Time-oriented overlays (orbit tracks, sun termina-

tors, etc.) are based on an interactively defined

Greenwich Mean Time that is of specific importance

to a given mission.

3.1.3 ARCHITECTURE

The system was designed as a standalone system for

an IBM PC compatible workstation executing DOS.

All graphics images are produced using the HALO

device independent graphics package, eliminating

graphics adapter hardware requirements.

3.2 SATVIEW

3.2.1 BACKGROUND

One of the Division's attitude responsibilities in-

volves the planning of attitude maneuvers to

achieve scientific instrument pointing objectives.

Some spacecraft require several attitude constraints

to be satisfied simultaneously. These may include

instrument target availability, thermal restrictions

and power requirements. As an aid to determine if
such constraints will be satisfied, the Satellite

Viewing system (SATVIEW) was developed as both an

attitude maneuver planning aid and a quality assur-
ance tool.

3.2.2 CAPABILITIES

Many of the SATVIEW system capabilities are similar

to those found in the 3-D Mon system. Images of the

earth, stars, moon, sun and other targets are gener-

ated in 3-d while the orientation of the spacecraft

model is driven from attitude data that has been pre-

viously generated. The attitude and environmental

data are provided to the system in greater than real-
time. This allows a 90 minute maneuver to be viewed

in several seconds. The user views this scenario

from any of the spacecraft instrument or sensor
field of views.

A second display mode of SATVIEW allows the user to

look at the universe from outside the celestial

sphere. The celestial sky is drawn as a sphere cen-

tered around the spacecraft coordinate system axes.

The sun, moon, stars, and the earth's outline are

drawn on the sphere while the spacecraft is repre-

sented by x, y, and z spacecraft body coordinate axes.
Sensor and instrument field of view outlines are

drawn on the sphere while attitude and environ-
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mental data are again provided in greater than real-

time. The user can interactively alter the viewpoint

to see the unfolding scenario anywhere outside the

sphere. Figure 12 is a celestial sphere image gener-

ated by SATVIEW.

An additional feature of SATVIEW is interactive mod-

ification of the spacecraft attitude. The user can ad-

just the spacecraft axes such that a particular mis-
sion constraint or set of constraints are satisfied.

The required attitude numbers are then returned to
the user.

3.2.3 ARCHITECTURE

SATVIEW is a standalone system residing on an

Silicon Graphics IRIS 4D/60T graphics workstation.

All graphics images are produced by calls to the

IRIS Graphics Library routines. Attitude data are

produced by software on a NAS 8063 computer and

downloaded to the IRIS workstation.

4. SOFTWARE DEVELOPMENT TOOLS

Due to the variance in capabilities, data formats, and

dynamics between spacecraft, the Flight Dynamics

Division is responsible for generating dynamic

simulators, telemetry simulators, attitude ground

support systems, and various mission planning tools

that are specific to a given spacecraft. Since many

of the displays incorporated into these systems vary

from mission to mission only slightly in layout, but

not in capability, software development tools have

been created to increase programmer productivity.
These tools are discussed in this section.

4.1 VEGAS

4.1.1 BACKGROUND

Of the numerical output generated by flight dynam-

ics software systems, a large quantity is presented

as displays of interactive alphanumeric tables or in-

teractive X-Y plots. Some systems also display the

output on world map plots. To reduce the resources

required to reproduce source code that generates

such complex display capabilities for each system,

the Visual Environment for Graphics-oriented

Analysis Systems (VEGAS) was developed. VEGAS

consists of independent high level subroutine pack-

ages that produce x-y plots, text displays, and world

maps (see [5]).

4.1.2 CAPABILITIES

The VEGAS X-Y Plot package provides capabilities for

data to be displayed as scatter or line plots with
Greenwich Mean Time axis label formats. An inter-

active environment is included that permits data

modification, point flagging, curve fitting, zooming,

panning and other orientation options. Curves can

also be updated in real-time if desired [3]. These ca-

pabilities are invoked through high level FORTRAN

subroutines.

The VEGAS Text Display package allows alphanumer-

ic data to be displayed with different color and video

attributes. User input is verified for type compati-

bility and range constraints [3]. Screen layouts are

defined through text-edited template files. These

files give an application programmer the ability to

change the screen format without relinking the ap-

plication.

The VEGAS World Map package was previously de-

veloped by another organization at GSFC. This pack-

age produces thirty world map continent projec-

tions and is invoked through a single FORTRAN sub-

routine. Routines are also provided for plotting con-

tours on top of the projections.

4.1.3 ARCHITECTURE

Both the X-Y plot and World Map packages are built

on top of the Template Graphics Software, Inc. ma-

chine and device independent graphics subroutine

package TEMPLATE. This design allows these pack-

ages. and application software incorporating these

packages to reside on the Division's IBM 4341 and

DEC VAX computers. This design also allows displays

produced by these packages to be generated on IBM
5080 and Tektronix 4100 series terminals.

Since TEMPLATE does not easily provide the charac-

ter string capabilities needed for alphanumeric dis-

plays, the Text Display package was built on top of

the IBM Graphics Access Method (GAM) package for

IBM mainframe applications and on top of the DEC

Screen Management Facility for VAX applications.

The IBM version of the package supports the IBM

5080, 3250, and 3278 terminals. The DEC version sup-

ports VT series compatible terminals.

5. SUMMARY

The Flight Dynamics Division of Goddard Space

Flight Center has committed itself to the use of com-

puter graphics as an effective and efficient tool for

comprehending mission related data. This commit-

ment has only been accepted after various systems

have proven their worth in the flight dynamics en-
vironment. From this commitment numerous

graphics-oriented systems discussed in this paper

were developed and have been or are currently

being validated for operational use while more sys-

tems are being planned. And, as more graphics sys-

tems are created, more graphics development tools
will be created, similar to those discussed in this

paper, to reduce software development costs.

A CKNO WLEDGEMENTS

I would like to thank Kelly Franks, Randy Frisch,

Greg Marr, Greg Shirah, David Weidow and other

members of the NASA Goddard Space Flight Center

and Dale Fink, Gary Hunt, Michelle Langrehr, and

Ernie Pittarelli of the Computer Sciences

Corporation for generating some of the figures used

in this paper and also providing technical support.

126



REFERENCES

1. Brown, C., Franks, K., Bugenhagen, J., Mucci, D.,

Shirah, G., Weidow, D., "Attached Shuttle Payloads

Broad Band X-ray Telescope Detailed Design

Document," CSC/SD-88/6125, Computer Sciences

Corporation, Greenbelt, Maryland, October 1988.

2. Chang, K., Garrahan, J., Langrehr, M., Pittarelli,

E., and Tamkin, G., "Flight Dynamics/Space

Transportation System 3-D Monitor System Release 2

System Description," CSC/SD-8816066, Computer

Sciences Corporation, Greenbelt, Maryland, August

1988.

3. Green, D., Pittarelli, E., Hendrick, R., Campos, M.,

Buhler, M., Durbeck, R., Jeletic, J., Shoan, W. ,

"Programmer's Guide to the VEGAS Graphics

Utilities," CSC/SD-87/6018, Computer Sciences

Corporation, Greenbelt, Maryland, December 1987.

4. Hardie, B., "System Description for the Trajectory

Computation and Orbital Products System (TCOPS)

User Interface," CSC/SD-88/6070, Computer

Sciences Corporation, Greenbelt, Maryland, July
1988.

5. Jeletic, J., Shoan, W., "Flight Dynamics Graphics

for the Space Station Era.," TEMPLATE User's

Network Conference, Arlington, Virginia, March

1987.

6. Langrehr, M., Buchanan, L., Chang, K., Garrahan,

J., Pittarelli, E., and Tamkin, G., "Flight

Dynamics/Space Transportation System 3-D Monitor

System Release 2 User's Guide," CSC/SD-8816006,

Computer Sciences Corporation, Greenbelt,

Maryland, June 1988.

7. Shirah, G., "Solving a Real-Time Performance

Problem of the Attached Shuttle Payloads Mission

Monitoring System Through Prototyping,"

NASA/Goddard Space Flight Center, 552.2, Greenbelt,

Maryland, December 1988.

8. Wallace, R.,and Buchanan, L., "SPIF/FDF

Interface Graphics Support System Requirements

and Specifications," CSC/TR-85/6702, Computer

Sciences Corporation, Greenbelt, Maryland, June

1985.

9. Weidow, D., "The Shuttle-Attached Payloads

Operational Support System," NASA/Goddard Space

Flight Center, 552.2, Greenbelt, Maryland, December

1986.

10. Wetmore, R., Anderson, C.,and Coon, G.,

"Shuttle-Attached Payloads Operational System

Requirements and Functional Specifications,"

CSC/TR-85/6001, Computer Sciences Corporation,

Greenbelt, Maryland, May 1985.

Figure 1. A Trajectory Computations and Orbital

Products System world map plot displaying coverage

of the Earth Radiation Budget Satellite (ERBS).

Figure 3. The deployment of the Hubble Space

Telescope as displayed by the 3-D Mort system.

Figure 4. The deployment of a Tracking Data and

Relay Satellite as displayed by the 3-D Mon system.

The top right viewport displays a view from the rear

cockpit window. The earth and sun position vectors

and the Shuttle velocity vector are also displayed.
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Figure 6. The PAYLOADS MM Celestial Sphere dis-

play illustrating the view along the Shuttle's -z axis

including the position of the earth, the earth's at-

mosphere, celestial objects, and instrument field of

view outline [1].

Figure 10. A 2-d world map plot produced by the

Mission Planning Graphical Tool configured for

orbit studies of the Hubble Space Telescope.

Figure 7. The PAYLOADS MM TDRS display illus-

trating the view along the Shuttle's -z axis includ-

ing antenna masks and past, current and future po-
sitions ofaTDRS [1].

Figure 11. A 3-d earth plot produced by the

Mission Planning Graphical Tool configured for

electromagnetic interference studies of the Hubble

Space Telescope.

Figure 9. The Attitude Heads-Up display config-

ured for the Gamma Ray Observatory satellite.

Figure 12. An interactive celestial sphere display

produced by the SATVIEW utility.
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ABSTRACT

The Orbital Maneuvering Vehicle (OMV) will

be remotely piloted during rendezvous,

docking, or proximity operations with

target spacecraft from a ground control

console (GCC). This paper describes the

real-time mission simulator and graphics

being used to design a console pilot-

machine interface.

A real-time orbital dynamics simulator

drives the visual displays. The dynamics

simulator includes a J2 oblate earth grav-

ity model and a generalized 1962 rotating

atmospheric and drag model. The simulator

also provides a variable-length communica-

tion delay to represent use of the Track-

ing and Data Relay Satellite System

(TDRSS) and NASA Communications (NASCOM).

Input parameter files determine the graph-

ics displays. This feature allows rapid

prototyping since displays can be easily

modified from pilot recommendations. Dif-

ferent subsets of OMV telemetry data can

be shown to determine the information

necessary for pilot operations.

A series of pilot reviews are being held

to determine an effective pilot-machine

interface. Pilots fly missions with

nominal to 3-sigma dispersions in trans-

lational or rotational axes. Console

dimensions, switch type and layout, hand

controllers, and graphic interfaces are

evaluated by the pilots and the GCC simu-

lator is modified for subsequent runs.

Initial results indicate a pilot prefer-

ence for analog versus digital displays

and for two 3-degree-of-freedom hand

controllers.

INTRODUCTION

The OMV is designed as a reusable unmanned

spacecraft. Initially deployed from the

space shuttle, it is capable of staying in

orbit for months while receiving periodic

on-orbit maintenance and refueling. The

OMV is used to deliver, retrieve, reboost,

or maneuver satellites between the shuttle

or space station and a specific orbit.

The OMV flies autonomously to within 1000

feet of a target spacecraft. A pilot then

remotely controls the OMV in rendezvous,

docking, or proximity operations. The OMV

will be operated by NASA personnel from a

ground control console (GCC) located at

the Johnson Space Center.

The GCC sends pilot commands to the OMV

via NASA Communications (NASCOM) and two

Tracking and Data Relay Satellites (TDRS).

The OMV downlink transmissions consist of

telemetry and two video camera transmis-

sions. The communications link can trans-

mit up to 32 kilobits/second of telemetry

and i megabit/second of compressed video

signal. The communications link has an

approximate 3-second round-trip delay

time.

The OMV docks with the target spacecraft

using either the remote manipulator system

(RMS) grapple docking mechanism (RGDM) or

a three-point docking mechanism (TPDM) for

those spacecraft that have a flight sup-

port system (FSS) interface.

The OMV prime contractor, under NASA

Marshall Space Flight Center, is TRW.

The OMV is scheduled for deployment in

November 1993. Its potential first mis-

sion is in conjunction with the Waves in

Space Plasma (WISP) project.

OMV flight operations will be conducted

from either of two identical GCCs. A GCC

provides pilot control of the OMV during

all flight operation phases. Each GCC

consists of switches, hand controllers,

two terminals and keyboards, data proces-

sing equipment, and two monitors display-

ing information from the on-board docking

and pan/tilt/zoom (PTZ) video cameras.

The pilot manipulates hand controllers for

OMV maneuvers and utilizes switches for

OMV or console commands.
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TheGCCmust provide a pilot-machine
interface that gives adequateinformation
to avoid information overload, and mini-
mizes pilot errors. TRWwasgiven the
task of building a prototype GCC(PGCC)to
simulate man-in-the-loop, real-time remote
OMVteleoperations. The PGCCis the tool
used to establish the console pilot-
machineinterface.

SIMULATOROVERVIEW

Simulator Models

The PGCC was developed as a representative

operational pilot station used for pre-

liminary design evaluations and crew

reviews. The OMV program concluded that

to evaluate a pilot-machine interface

fully, it was necessary to simulate a

dynamic docking environment which inte-

grates flight telemetry with hand-eye

coordination. Space environment and OMV

models are included in the simulation.

The simulator dynamically models the space

environment. The environment models

include a J2 oblate earth gravity model

and a generalized 1962 rotating atmos-

pheric density and velocity model. A drag

model is based on a cylindrical approxima-

tion for the OMV and target bodies.

Each body is characterized by 6-degree-of-

freedom (DOF) equations of motion includ-

ing effects of position, velocity, atti-

tude, translational and rotational rates,

moments of inertia, centers of mass, and

gravity gradient torques. Each target

satellite is in free drift and has no

control system. Only the OMV has thrus-

ters and a flight control system.

Mission date and time parameters position

the sun, moon, and earth in the simulator

reference frame. Other mission parameters

determine orbit position and velocities.

Positions of the OMV during the simulation

determine sun occlusion, camera sun intru-

sion, and communication zones of exclu-

sion. They also affect lighting condi-

tions and shading. Without these real-

world conditions, valid data cannot be

taken.

The simulator models several OMV subsys-

tems. These include the fuel system,

radar, and two video cameras. For exam-

ple, the pilot may select either a hydra-

zine or GN 2 thruster system during flight.
Each alternative has its own fuel tanks

and rates of consumption. The hydrazine

tanks are manifolded while the GN 2 tanks

are independent.

Each fuel system has its own set of

thrusters. Input parameter files

determine the location, force vector, and

impulse moment of each thruster. A

particular thruster is rendered useless

when the fuel tank feeding that thruster

is empty. Deviation in thruster force is

modeled by varying the force vectors in a

parameter file. Simulator logic is used

to model the less efficient first few

microseconds of burn. A thruster pulse

size, initialized by an input parameter,

determines the minimum burn allowed.

Individual thrusters can be failed on or

off. If a thruster is failed off, no

force or fuel is spent. However, if a

thruster fails on, fuel will be burned and

corresponding impulse moments will occur.

Pilots maneuver the OMV by commanding

thruster burns in one or more axes. The

simulated on-board computer receives the

axis thrust commands and uses a Jet select

table to compute thruster burn times. The

simulator provides two Jet select tables.

The real OMV utilizes identical jet select

information which is uplinked to the

vehicle during preflight checkout.

The simulator also models the OMV radar

subsystem. A pointing vector from the

radar mount to the target is computed.

This vector takes into account the OMV

position, gimbal limits, and radar field

of view. The simulator computes the

azimuth, elevation, azimuth rate, and

elevation rate from the pointing vector.

The radar also models the radar-to-target

surface range and range rate. Radar noise

and bias are introduced into the range and

range rate data for greater realism. The

models also provide maximum and minimum

radar cutoff points at selectable

distances.

The simulator models the docking (bore-

sight) and PTZ cameras. They both produce

black and white video. The pilot operates

either a Joystick or switches on the PGCC

console to tilt, pan, or zoom the PTZ

camera to a commanded position with

corresponding slew rates.

Each camera has a 30-degree half-angle

field of view. Gimbal stops limit the PTZ

camera range of motion. Each camera is

equipped with a sensor to detect sun

brightness. If sun intrusion should

occur, the shutter of the camera will

close, blinding that camera.

Contact detection and limited dynamics are

modeled in the simulator. Since modeling

full contact dynamics between all surfaces

of the OMV and its target is impractical

without additional computing power, the

simulator detects contact only between the

open or closed TPDM latches and target

trunnions. The simulator computes contact

dynamics with a method of "soft con-

straints." This technique allows solids to

penetrate each other at the point of con-

tact. The algorithm then computes the

restoring normal and tangential forces

based on the depth of penetration. Damp-

ing forces also may be added. In addi-

tion, sliding (Coulomb) and viscous
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friction may be applied. Linear and

angular momentum is conserved upon

contact for complete 6-DOF motion.

The OMV model contains a flight control

system. The system uses the earth

centered inertial (ECI) or local-vertical

local-horizontal (LVLH) reference frames.

A three-axis linear control law fires

thrusters if either attitude or attitude

rates exceed a selectable deadband. Atti-

tude or rate hold is disabled for an axis

if a pilot commands a maneuver in that

axis. In addition, an automatic attitude

maneuver capability is built into the

simulator. The simulator rotates the OMV

by firing thrusters to the desired

attitude commanded by the pilot.

The OMV uses two high-gain antennas (HGA)

to communicate with the TDRSS spacecraft.

The simulator maintains a pointing vector

from each HGA to each TDRS. Communication

zones of exclusion are based on the orbit,

ECI satellite positions and velocities,

earth occultation, and HGA gimbal limits.

Simulator Interfaces and Architecture

The simulator provides several interfaces

in addition to the pilot-machine inter-

face. The simulator operator has a

telemetry and data display on a side

terminal. The operator can introduce

anomolies from either this terminal or

from an event file. The event file, read

in at initialization, is a list of com-

mands and events that occur at some speci-

fied time into the simulation. The opera-

tor also receives history and contact

report files for post-simulation analysis.

The history file contains all OMV and

target state vector information, switch

inputs, and environment information. The

contact report file contains time-stamped

contact information.

Nearly all simulator data is initialized

by input parameter files. These files

determine values such as fuel and thruster

characteristics, orbit position, environ-

ment data, mass properties, and size of

the OMV and target. They also initialize

such other data as the number of targets,

placement of the video camera, radar

characteristics and all simulator control

information.

Orbit characteristics determine initial

orbit placement and rates. This data can

be specified in osculating mean of 1950

(OM50), rectangular mean of 1950 (RM50),

inertial mean of launch date (IMLD), or

target relative reference frames. State

vector integration and derivatives are

computed using quaternions. Forces and

accelerations due to gravity, torques, and

thrusters are computed using the Adams-

Moulton integrator.

The simulator maintains its own time with

software interrupts. Each major subsec-

tion is given a constant delta time each

cycle to perform its tasks. For example,

the input subsection reads the joysticks

and switches every 50 milliseconds. The

on-board computer (OBC) subsystems are

executed every 250 milliseconds and

graphic displays are updated every 200

milliseconds. This approach simplifies

the software architecture, eliminating

separate processes and semaphores.

However, one slow subsection can degrade

the entire simulation.

The simulator hardware consists of a

MicroVAX 3600, Chromatics CX2000 with

frame grabber and a 24-bit z-buffer. The

CX2000 drives two 1280 x 1024 pixel

19-inch monitors. A Q-bus Direct Memory

Access (DMA) connects the MicroVAX with

the CX2000. The simulator drives two

pilot consoles, each containing hand

controllers and up to 48 switches. The

simulator is built from approximately

17,000 lines of FORTRAN.

PILOT-MACHINE INTERFACE

Interface Description

The main PGCC task is to define a pilot-

machine interface: the physical console

and graphic displays. The console inter-

face consists of console dimensions, hand

controllers, and placement, function, and

choice of switches. The console ergonom-

ics are designed to accommodate the 95th

percentile man and 5th percentile woman

(Figure i).

Figure i.

Console
Prototype Ground Control

The selection, placement, and style of

telemetry and video data form the second

part of the pilot interface. A language

was created to express overlay character-

istics and to allow easy reconfiguration.

Input parameter files, written in this

language, define the color, placement,
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style, etc. of each overlay. In this

way, per-simulation customization can take

place. In addition, alternate styles of

display, graphic or text, can both be

accommodated (Table I). Merely changing

the input files drastically alters the

"look and feel" of the pilot-machine

interface. Figure 2 shows a current set

of piloting overlays.

Table I. Overlay Definition File

* TPDM Docking Overlay
,

BEGIN ICON NEAR FIELD

OVERLAY 0 --
OFFSET i00.0 73.242

SCALE 1.0 1.0 1.0

ROT 0.0

SUB ICON

COLOR WHITE

OFFSET 0.0 0.0

* Vertical Ranging Marks

* i0 feet out

LINE -4.736 2.0 -4.736 -2.0

LINE 4.736 2.0 4.736 -2.0

* 3 feet out

LINE -15.787 2.0 -15.787 -2.0

LINE 15.787 2.0 15.787 -2.

* Minimum docking range

LINE -21.714 2.0 -21.714 -2.0

LINE 21.714 2.0 21.714 -2.0

END SUB ICON

END ICON --

BEGIN ICON DOWN THRUST

OVERLAY 1 --
SUB ICON

OFFSET 3.5 1.0

ROT 270.0

SCALE 1.0 1.0 1.0

FILLED

COLOR CYAN

ARROW

ARC 90.0

END SUB ICON

SUB--TEX_

HEIGHT 2

EXPAND 1.0

RIGHT

STRING Rate:

END SUB TEXT

END ICON --

DOCKING INTERFACE

The pilot operates hand controllers and

switches to guide the OMV to a dock with

the target vehicle. The OMV is equipped

with one of two types of grappling mecha-

nisms depending on the target vehicle

interface. Two standard mechanisms

include the RGDM or the TPDM. The current

simulator configuration models the TPDM

with the Hubble Space Telescope. After

the pilot maneuvers the OMV within the

docking envelope, the three TPDM latches

can De independently closed, ensnaring the

trunnions mounted on the aft of the Space

Telescope.

The pilot uses the docking target located

on the back face of the target satellite

as a guide when docking. The target, in

relation to the docking overlay, gives the

pilot relative translation and rotation

information. When the docking target

fills the docking overlay, the target

trunnions are within the grapple capture

envelope.

Each TPDM latch mechanism is equipped with

two sensor beams. When the trunnion

breaks a sensor beam, the corresponding

grapple beam overlay changes color. Using

the overlays and video, the pilot can

accurately determine the position and

attitude of the target relative to the

OMV.

Attitude errors discernible from the Space

Telescope docking target are larger than

the TPDM will accommodate. Therefore, the

docking overlay is built to give the pilot

information on maximum attitude and trans-

lational docking allowances. With this

overlay, the pilot can back out, if neces-

sary, to realign the OMV with the target

for a safer dock. If the docking target

should exceed the overlay, the pilot can

expect the latches to contact the trun-

nions. The overlay provides the allowances

at the minimum docking range (when the

trunnion are Just within the docking

envelope) and at the point when the trun-

nions are centered over the second (inside)
beam.

Astronaut comments indicate that range and

range rate information is especially

important within the radar cutoff point.

Since acceptable latch closure rates are

0.1 foot/second along any axis and 0.5

foot/second about any axis, it is important

the pilot get an accurate "feel" for the

OMV's closing rate. Therefore, ranging

aids were built into the docking overlay.

PILOT REVIEW

Approach

The first in a series of simulator reviews

was held in August 1988. Thirteen people

from TRW, Johnson Space Center, and

Marshall Space Flight Center, including

two astronauts, were available as pilots.

The pilots ran through a sequence of

training procedures to familiarize

themselves with switch layouts, OMV

thruster sensitivity, docking procedures,

and overlays. After being "qualified,"

each pilot ran a set of simulations

emulating various mission phases. Initial

conditions ranged from nominal to 3-sigma

cases in translational or rotational rates.

Overlays were explained prior to each

training procedure. Piloting tips were
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provided and any questions were answered

during the simulation. Pilots flew

simulations during eclipse and docked with

spinning targets. A history log was kept

of each procedure and simulation for

analysis. After each training procedure

and simulation, pilots were debriefed. The

total flight time exceeded 40 hours.

Training time was limited to approximately

1 hour per pilot. The time for each run

varied between i0 and 30 minutes.

The first review focused on two variables:

text versus graphic displays and type of

hand controller. Although these were the

primary concerns, other feedback was also

noted.

Review results were based on observations

during flight simulations and pilot

feedback gained from questionnaires and

discussions. The evaluation focused

primarily on the reasons for the success or

failure to reach the simulation goal.

Initial Results

The review clearly showed a pilot

preference for a hybrid of primarily

graphic overlays mixed with some text.

There were varying opinions expressed on

the graphic versus text attitude direction

indicator (ADI) format. In future reviews,

pilots will select an ADI format from a

palette of four displays. Digital range

and range rate will be added to the

enlarged analog radar display. The radar

display will be enlarged to detect azimuth

and elevation rates more easily.

Some of the overlays are placed directly on

top of the video. These were difficult to

see at times due to the underlying video
color. Since the video contrast varies

during orbit, there is a need to

dynamically change the color of the

overlays during simulation. One overlay

color may be acceptable during one mission

phase but not during another.

Pilots flew with targets spinning at 1.0

degree/second. It was apparent that the

piloting techniques vary sufficiently to

warrant another type of docking overlay.

Specific aids for matching target spin

rates and tracking rotating targets will be

included with the standard ranging informa-

tion and docking allowance overlays.

Overall, the pilots liked the console ergo-

nomics. Most preferred an adjustable tilt

monitor. They were pleased with the

monitor size and resolution. Pilots flew

with both types of displays and hand

controllers. One console had two 3-DOF

hand controllers and the other had one

6-DOF controller with a different

assortment and arrangement of switches.

Switches varied in type, shape, color, and

mounting. Pilots indicated that switch

shape, size, or mounting did not aid in

correct switch selection. Most pilots

preferred flush-mounted switches.

Unverified piloting switch commands are

indicated by flashing switches. The switch

light changes color after the command has

been verified or executed. This scheme

worked well; most pilots did not prefer any
other method.

Most pilots were trained to fly with two

3-DOF hand controllers and preferred to

continue using them rather than the one

6-DOF controller.

CONCLUSION

It is evident that a full dynamic

simulation is prerequisite to gaining

useful data. Comments on an interface from

an unrealistic simulator would have limited

use. Likewise, trained pilots are needed

to produce valid conclusions and avoid

review comments which merely reflect

unfamiliarity with the simulator, overlays,

or piloting techniques.

The choice of pilot missions also

influences the quality of gathered

information. Carefully planned missions

which stress pilot or OMV performance are

most useful; during nominal missions,

nearly all displays either work well or are

never used.

By holding a series of pilot reviews and by

building prototype displays, agreement will

be reached on an acceptable pilot-machine

interface. It is expected that having a

community consensus on an OMV pilot-machine

interface will prevent problems during the

acceptance phase of the GCC project.
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THE USE OF GRAPHICS IN THE DESIGN OF THE HUMAN-TELEROBOT

INTERFACE

Mark A. Stuart and Randy L. Smith

Lockheed Engineering and Sciences Company
2400 NASA Road 1

Houston, Texas 77058-3711

The Man-Systems Telerobotics Laboratory (MSTL) of NASA's Johnson

Space Center employs computer graphics tools in their design and

evaluation of the Flight Telerobotic Servicer (FTS) human/telerobot

interface on the Shuttle and on the Space Station. It has been

determined by the MSTL that the use of computer graphics can promote

more expedient and less costly design endeavors. This paper describes

in detail several specific examples of computer graphics applied to the

FTS user interface by the MSTL.

INTRODUCTION

Computer graphics techniques, including

software prototype development programs,

can serve as an aide in the design, evaluation,

and development of user interfaces of many

types. These systems design tools can result

in the development of ergonomically

well-designed workstations in less time with

lower costs when compared to the use of

other systems design tools.

With the system development process

becoming more complex and expensive, more

emphasis is being placed on the evaluation of

systems during early stages of the

development cycle. The design of systems

that include human operators is especially

complex because determining overall systems

performance is dependent upon the

interaction of the human operator, hardware

components and software components (ref. 1).

Adequately evaluating the performance of a

system during the design cycle is becoming

increasing more difficult when using the

static evaluation tools traditionally available

to the Human Factors Engineer, such as job

and task analyses and mockup development

(ref. 2). It is becoming more common for

systems developers to use computer graphics

as a design tool instead of hardware models

(ref. 3) and for Human Factors Engineers to

use computer graphics to enhance the use of

static design tools (ref. 4).

The Man-Systems Telerobotics Laboratory

(MSTL) of NASA Johnson Space Center (JSC)

with support from Lockheed has extensively

used computer graphics tools in their design

and evaluation of the Flight Telerobotic

Servicer (FTS) user interface. It is the goal

of the MSTL to help design, evaluate and

develop requirements for the user interface

of the FTS. Goddard Space Flight Center is

the lead center in the development of the FTS

with other NASA centers and industry playing
various roles.

The FTS will be a dual-armed teleoperated

robot used to help assemble, service, and

maintain NASA's Space Station. There will be

an FTS control panel on both the Shuttle and

the Space Station. The design of the FTS

control panel is especially challenging since
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it may be physically impossible to have
identical control panelson both the Shuttle
and the Space Stationdue to the physical
constraints of the Shuttle. The ultimate
objective in the design of the FTS control
panel is that the human operator's
capabilities and limitations have been best
accommodatedfor while ensuringthat overall
systemsgoalsand requirementsare met. The
use of computergraphicswill enableNASAto
iterativelydesigna goodFTScontrolpanelon
the Space Station which does not radically
differ from the FTScontrol panel includedon
the Shuttle. Radical departures from the
control panel used on the Shuttle will
increase the likelihood of negative
transferenceor reversal errors. Therefore,
design features which take advantage of
populationexpectanciesshouldbe a constant
featureacross both control panels to ensure
maximumperformance.

This paper will discuss the MSTL's use of
computer graphics tools that have been
applied to the design and evaluationof the
human-telerobotinterfacethat will be a part
of NASA'sShuttleand Space Station. Each
examplewill begin with a statementof the
objectivesof the task and will then detail
the approach taken by the MSTL for that
particular application. The discussion of
these applications will also include
illustrationsof the computergraphicsused.

PROGRAMMABLEDISPLAYPUSHBUTTONS

The first example given will be an

illustration of how computer graphics was

used by the MSTL to establish a set of

guidelines concerning the use of

programmable display pushbuttons (PDPs) on

the Space Station's FTS control panel (see

ref. 5 for a detailed discussion concerning

this study). The graphics tool used during

this evaluation was Hypercard. Hypercard is

an information management software package

which allows the user to organize text,

graphics and active "screen buttons" into

cards. The cards can then be linked together
in different user-definable stacks. The

stacks can then be arranged so that

high-fidelity control panel prototypes can be

created with relative ease.

This phase of the FTS workstation evaluation

covered a preliminary study of PDPs. Since

the study of PDPs is now in the early phase of

the design cycle, the focus on this evaluation

was to use computer graphics as a means of

testing the feasibility of using PDPs on the

FTS control panel. The PDP is constructed of

a matrix of directly addressable

electroluminescent (EL) pixels which can be
used to form dot-matrix characters. PDPs

can be used to display more than one message
and to control more than one function. Since

the PDPs have these features, then a single

PDP may possibly replace the use of many

single-function pushbuttons, rotary switches,

and toggle switches, thus using less panel

space. Due to space constraints on the

Orbiter and the Space Station, an overriding

objective of the design of the FTS

workstation is that it take up as little panel

space as possible. It is of interest to

determine if PDPs can be used to adequately

perform complex hierarchically structured

task sequences.

Other investigators have reported on the

feasibility of using PDPs in systems design

(refs. 6,7), but the present endeavor was

deemed necessary so that a clearly defined

set of guidelines concerning the advantages

and disadvantages of PDP use in the FTS
workstation could be established. This would

ensure that PDP use was optimized in the FTS
workstation.

The objective of this investigation was to

study the performance of subjects performing

a simulated manipulator task on PDP and

non-PDP computer prototypes so that

guidelines governing the use of programmable

display pushbuttons on the FTS workstation

could be created. The functionality of the

manipulator on the Orbiter was used as a
model for this evaluation since the

functionality of the FTS at the time of this

writing had not been solidified.

The graphics version of the non-PDP control

panel is depicted in Figure 1. The

distinguishing feature of this configuration

is that traditional single-function

pushbuttons are used in conjunction with a
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simulated EL panel to activate commands.

The EL panel was simulated in this evaluation

by displaying single-function commands as

they would appear on the EL panel in the upper

right-hand corner of the prototyped screen.
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Figure 1 -- Non-PDP control panel prototype.

The graphics version of the PDP control panel

is depicted in Figure 2. This control panel
utilized simulated POPs instead of

single-function pushbuttons. In Figure 2, the

PDPs are the twelve pushbuttons located in

the lower-middle portion of the display. The

portions to the left and top of the display are

dynamic status indicators that were used to

display various functional states.
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Figure 2 -- PDP control panel prototype.

Figure 3, SINGLE is now displayed in the EL

display and the PDPs have changed to list the

options that follow under SINGLE. The small

EL display was designed to serve as a

navigational aid to help orient operators

throughout performance of the hierarchically
structured tasks. It was contended that the

use of the navigational aid in the PDP

hierarchy would be useful since a previous

evaluation (ref. 8) found that navigational

aids are helpful with hierarchical search

tasks through menu structures on a computer.
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Figure 3 -- PDP control panel prototype with

PDP changes and navigational aid.

After performing the task scenarios on both

of the control panel prototypes, each subject
was asked to select which of the two control

panel prototypes were preferred. Each

subject was also asked to complete a
questionnaire designed to garner subjective

impressions concerning the control panels.

Data were collected and analyzed with the

objective of determining differences in user

performance and preference between the two

different control panel configurations so

that, ultimately, guidelines concerning the
use of PDPs could be established. All numeric

data were statistically analyzed with a

repeated measures analysis of variance.

When a PDP is selected, the name of that

function is then displayed in a small

simulated EL display located just above the

PDP cluster and the options that follow

within that functional category are then

displayed by the PDPs. For example, when

SINGLE is selected in Figure 2, the display

changes to that depicted in Figure 3. In

The ultimate objective of this investigation

was to use computer prototyping to establish

a set of guidelines concerning the use of PDPs
on the FTS workstation. The data collected

during this investigation were used to create

these guidelines. It is contended that the

established set of guidelines will also be

generalizable to other workstations as well.
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For a complete list of these guidelines,

please see ref. 5. It is contended that the use

of this set of guidelines will help to ensure

that PDPs will be optimally designed and

arranged.

The use of computer graphics proved to be

invaluable during this evaluation. Graphics

allowed the experimenters to iteratively try

out many different design configurations

before testing actual, hard-wired PDPs.

Without the use of computer prototyping, it is

contended that the design process would have

taken much more time and money to perform

as efficiently. If computer prototyping was

not used by the MSTL then it would have been

necessary to have completely assembled the

hardware components and electrical wiring of

each of the design configurations evaluated

with the computer prototyping method to

iteratively evaluate different design

possibilities so that an optimal solution

could be derived. The hardware approach

would have been much more expensive and
involved.

HAND CONTROLLERS AND RESTRAINT SYSTEMS

The second example will be a discussion of

how graphics was used to evaluate the

placement of different types of hand

controllers and different types of body

restraint systems within various conceptual
designs of the FTS workstation on the

Shuttle. The tool used during this evaluation

was the PLAID graphics package. PLAID is a

graphics development package created by the

Graphics Analysis Facility of NASA's Johnson
Space Center. PLAID enables the creation of

three-dimensional, color, graphical images

with accompanying animation. The feature of

animation enables the MSTL to evaluate

different workstation configurations with

the interaction of figures of human operators

which are anthropometrically correct,

thereby determining anthropometric reach

limits and viewing angles. PLAID also makes

it possible to evaluate how well operators of

varying physical dimensions can interact

with different workstations.

PLAID enabled the MSTL to iteratively

evaluate FTS workstation layouts within the
aft flight deck and the mid-deck of the

Shuttle. Figure 4 illustrates a conceptual

design of the placement of the FTS

workstation on the aft flight deck. (PLAID

drawings are produced in color, but, due to

reproduction restrictions on this document,

color prints could not be included in this

article. Therefore, the PLAID renderings

included in this paper are, out of necessity,
line drawings.) If the FTS workstation is

placed in this location, it will be in close

proximity to the Remote Manipulator System

(RMS) control panel. This particular figure

gives an indication of how two 95th

percentile male operators would work

together simultaneously. The reader should

notice that the PLAID drawing indicates that

there will be some shared work space

between the two operators. This important

finding was made available to the MSTL

without the necessity of fabricating

full-scale mockups. Different sized operators

other than the ones examined in this example

could also have easily been put into the aft

flight deck conceptualizations for evaluation.

Figure 5 illustrates how the FTS workstation

might be laid out in the mid-deck of the

Shuttle. In this figure, a 95th percentile

male operator is using the workstation
located within the bank of lockers in the

mid-deck of the Shuttle. Figure 6 is a

conceptualization of how well a 5th

percentile female would be able to reach the

controls of the mid-deck FTS workstation.

The reader should notice that in each of these

two figures a restraint system that attaches

to the torso of the operators is included for

evaluation. This particular restraint system

concept was developed by Charles Willits of
NASA-Reston.

CONTROL/DISPLAY LAYOUTS

The third example will be a discussion of the

use of computer graphics in the consideration

of the placement of the FTS control panel in

the Shuttle. At the time of this writing, it
had not been determined where the FTS

control panel would be located in the Shuttle.

As in the discussion of the use of PLAID in

138



Figure4 -- PLAID conceptualization of the placement of the FTS

workstation in the aft flight deck of the Shuttle.

Figure 5 -- PLAID conceptualization of the

placement of the FTS workstation

in the mid-deck of the Shuttle with

a 95th percentile male operator.

Figure 6 -- PLAID conceptualization of the

placement of the FTS workstation
in the mid-deck of the Shuttle with

a 5th percentile female operator.
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the previous section, two locations were
being considered:the aft flight deck and the
mid-deck. Many different design features
were considered and computer graphics
enabledthe MSTLto quicklyand inexpensively
evaluate the preliminaryplacementof these
features. Someof these featureswere the
size and number of monitors to use,
placementof control switches,the types of
controls to use, and whether or not a
detachablekeyboardshouldbe a part of the
control panel. The graphicspackageused in
this examplewas MacDraw. MacDrawis a
graphics development package that is
available on Apple Macintosh computer
products.

The first examples given will be design
considerations made concerning the
placementof the FTScontrolpanel in the aft
flight deck. Figure7 is a drawingmadewith
MacDrawto illustratea possibleFTScontrol
panel usingaft flight deckpanelA6-A2.

The secondlocationwithin the Orbiterwhere
the placementof the FTS controlpanel was
considered was the mid-deck. There was
morespaceavailablein the mid-deckfor the
FTS control panel, so the control panel
layouts where slightly different. Figure 8 is
an illustrationof a control panel layoutin the
mid-deck.

The MSTLhasdeterminedthat one advantage
of the use of computergraphics is that it
will allow a somewhatextensiveanalysisto
takeplacebeforeany physicalmockupshave
been developed. After several design
iterations using computer graphics,
full-scale mockups with varying levels of
fidelity can then be constructed.

OTHERCOMPUTERGRAPHICSAPPLICATIONS

The MSTL had other proposed uses for

computer graphics at the time of this

writing. Since these applications were still

in the design stage, the drawings were not

available for this publication. None the less,

these applications also represent further

uses of computer graphics within the field of

Human Factors. For this reasons, then, these

projects will be briefly described here.

One project which is currently underway is

the use of Hypercard to create "pulldown" and

"popup" menu-overlays on real-time video

images that appear on cathode ray tube (CRT)

screens. The video images will be fed from

analog and digital cameras located at remote

locations from test subject viewers. The

video images will be the subjects' only view
of remote work sites of interest. The

menu-overlays will enable the MSTL to

evaluate the utility of an operator using
various input devices to control cameras

while performing simulated FTS remote

manipulation tasks.

Another project underway at the MSTL was

the proposed use of computer-aided

measurement tools to monitor and display

various indicants of work physiology,

especially mental workload. The objective

here was to incorporate computer-aided data

collection and display technologies so that

the MSTL could evaluate the workload

tradeoffs associated with various

workstation components and configurations.

CONCLUSION

The consideration of the productivity, safety,
and comfort of the astronaut crewmember is

being incorporated into the design process of

advanced NASA telerobots through the use of

powerful computer-aided systems such as
PLAID, Hypercard and MacDraw. The above

mentioned examples serve to illustrate the

invaluable role that computer-aided design

technologies play in the design and

development of the FTS workstation by NASA
JSC's MSTL. The MSTL has determined that

the use of computer graphics packages
contributes to a more efficient and less

costly systems design cycle. Graphics

packages will continue to be used by the MSTL

and should certainly exhibit increased usage
throughout the field of Human Factors.
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ABSTRACT

Distributed Earth Model / Orbiter Simulation

(DEMOS) is a network based application

developed for the UNIX environment that visu-

ally monitors or simulates the Earth and any

number of orbiting vehicles. Its purpose is

to provide Mission Control Center (MCC)

flight controllers with a visually accurate

three dimensional (3D) model of the Earth,

Sun, Moon, and orbiters, driven by real time

or simulated data. The project incorporates

a graphical user interface, 3D modelling

employing state-of-the art hardware, and

simulation of orbital mechanics in a

networked / distributed environment. The

user interface is based on the X Window Sys-

tem and the X-Ray toolbox. The 3D modelling

utilizes the Programmer's Hierarchical

Interactive Graphics System (PHIGS) standard

and Raster Technologies hardware for render-

ing / display performance. The simulation of

orbiting vehicles uses two methods of vector

propagation implemented with standard UNIX /

C for portability. Each part is a distinct

process that can run on separate nodes of a

network, exploiting each node's unique

hardware capabilities. The client / server

communication architecture of the application

can be reused for a variety of distributed

applications.

i. INTRODUCTION

This paper describes a graphics project under

development by the NASA / Johnson Space

Center (JSC) Workstation Prototype Lab (WPL)

staff that provides a scene generation tool

capable of maintaininq and displaying a

realistic model of the Earth and various

orbiting objects. Display output may be used

to drive a large screen projector or closed

circuit TV. The four major components of the

application will be described. The first

section covers the architecture and communi-

cation between the different tasks. The

second section describes the user interface

that controls the system. The third section

is the model manager, which is the center of

the application that manipulates the 3D

graphics and coordinates the simulations.

The final section discusses the simulation

task, which generates positional and attitude

data representing an orbiting vehicle.

2. BODY

2.1. Architecture

DEMOS is based on a server/client model. The

model manager is the focal point of the sys-

tem. It performs the server function, ser-

vicing requests from the client processes.

The clients include one user interface task

and several simulation tasks. There is one

simulation task per orbiting vehicle, and

several vehicles may be viewed simultane-

ously.

The processes that comprise DEMOS are Local

Area Network (LAN) transparent, as a result,

each task may run on different network nodes.

Communication between the tasks is accom-

plished by passing packets via UNIX sockets,

which is compatible across multiple vendor

workstations. The sockets also work within a

single workstation, so full flexibility is

provided in defining the topology of the

application. Configuration of each task's

node can be defined by the user at run time.

The application may be distributed over mul-

tiple workstations to off-load computations

to machines more appropriate for that type of

work. The model manager must run on the

workstation containing the target graphics

hardware. Eliminating nearly all other

processes on the model manager workstation,

allows it to run at real time priorities,

thus allowing the 3D image updates to occur

more frequently. The graphical user inter-

face is dependent on the X Server, graphics

hardware, keyboard, and mouse, but it does

not use much CPU, so a low end workstation is

acceptable. The simulation tasks are CPU

bound and profit from floating point

hardware.

Figure 1 shows the system configuration of

DEMOS. Circular components denote system

processes. Double ended arrows represent

communication between processes. Rectangluar

boxes represent external data files. The

"Config Data" contains system initialization

information. The "Model Defs" contain exter-

nal scene descriptions and model geometry.
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These files are read by the model manager in
order to construct a hierarchical scene. The

user interface process is started first and

employs the services of the X server. Upon

successful initialization, the user interface

process starts the model manager. The model

manager in turn starts the Sun, the Moon, and

any number of orbiting vehicle simulations.

The system is shutdown in reverse order. The

model manager terminates all simulation

processes before terminating itself. The

user interface is shutdown immediately upon a

user request.

ConfigData

l ModelDefs

Figure 1 - DEMOS System Configuration

Each task in DEMOS uses the same packet send

and receive subsystem. This prevents any

task from blocking for I/O on socket opera-

tions. Since many packets may be sent at

once, a queue holds the packets that the UNIX

kernel cannot keep internally. The socket

"streams" protocol is used to guarantee

packet delivery and ordering. The queuing

system also handles sending a partial packet.

These packets can vary in size. At the

receive end, the same subsystem isolates the

application from incomplete packets by build-

ing and returning only complete packets.

2.2. User Interface

The user interface task provides the single

point of contact between a user and DEMOS.

It provides full control of DEMOS, including

the ability to initiate and shutdown the sys-

tem. The user interface does not have to be

present after initializing DEMOS. The user

can logoff the user interface and DEMOS will

continue running. The system allows only one

user interface to run at a time to ensure

system consistency. System advisories are

normally sent to the user interface, but if

it is not present, then they are queued by

the model manager until a user logs on.

There are two versions of the user interface

for DEMOS - a graphical version, "xruif", and

a command line interpreter version, "shuif"

Xruif is based on the X Window System, so it

is dependent on a graphics terminal con-

trolled by an X server. On the other hand,

shuif will r_n on any ASCII terminal, allow-

ing more portability. The only difference
between shuif and xruif is the user interac-

tion. The low level areas of the two user

interfaces share the same services.

2.2.1. Shuif

The command line interpreter version of the

user interface is similar to the UNIX shell

("sh" or "csh"). It prompts for input from

the keyboard, parses the input line for the

command, and then executes the command.

A generic command line interpreter subsystem

was created in the process of developing

shuif. The first word of the input line is

taken as the command name with the rest of

the line being the arguments to the command.

The command definitions, which are table

driven, include the invocation, or callback,

subroutine, as well as help information. The

command line interpreter can be recursively
nested to simulate submenus of commands.

This subsystem also uses the "select" system

call to block for I/O pending on any file

descriptor. Each file descriptor has a

corresponding callback routine which is

called to process its data. I/O.

"Autotype" is a feature that allows shuif to

run a complete user interface session in

batch mode, reading commands from a file and

echoing them to the screen as if they were

typed by the user. This is useful for hands

free demonstrations and test scripts. A

"wait" command is included in shuif that

suspends the user interface until an event

occurs, such as waiting for the list of

models to arrive before requesting a model to

be loaded. Autotype files use the wait com-

mand to synchronize events within the system.

"Playback" is similar to autotype in that it

allows the user working interactively with

shuif to run a sequence of commands from a

file. This is a convenience feature for

redundant commands and to modularize opera-

tions involving a series of commands. Play-

back can also be invoked from an autotype
file.

To complement the autotype and playback

features, shuif can record (to a file) every-

thing typed in by the user. Recording can be

turned on or off at any time. Recording to

an existing file appends the new commands.

Shuif provides co,ands for entering data for

the simulation and base date values. When a

simulation is started or the base date is

set, the user has the option of using a data

file or typing in all of the values. The

data files can be created by a separate com-

mand that prompts the user for the values.

All data files are validated when they are
created and read.
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2.2.2. Xruif

Xruif, the graphical user interface to DEMOS,
is based on Xll Release 2. Since X is becom-

ing a windowing standard, X clients are

source code portable across many vendors'

workstations. Xruif uses the X-Ray toolbox

developed by Hewlett-Packard. The latest

version of X-Ray is from the Release 3 tape

of Xll from MIT. Xruif currently runs on a

Sun 3/60 with the MIT X server in either

monochrome or color.

The user interface style of xruif was not

intentionally based on any existing applica-

tion or style. It is based on the available

X-Ray editors.

Xruif is composed of a single window divided

into tiled panels. At the top is the title,

followed by the main menu, then a work area,

and an advisory panel at the bottom.

The work area is a reserved space where tran-

sient panels reside. All of the work area

panels are the same size, even though their

contents may not fill the panel. The work

area panels are composed of a selection

lists, (such as models, viewport configuraq

tions, viewport mappings and eyes, active

vehicles, and the on-line help screens), or

data entry screens for the base date and

simulation values. These panels are

activated by a main menu selection, and only

one panel can occupy the work area at a time.

When no panels are visible in the work area,

a simple panel with the "work area" label in
the center is left visible.

The user interface gadgets in X-Ray are

called editors. Many of the X-Ray editors

are used in xruif. The title bar editor con-

tains a graphically offset single line of
text with a selection box at each end. Each

panel in xruif contains a title bar with a

selection box containing a question mark for

displaying help information on that panel.

The push button editor is a matrix of oval

buttons containing a label that is selected

with the mouse. The main menu is comprised

of push buttons. The list editor is a rec-

tangle with an optional title bar at the top,

optional scroll bars on the side, and a list

of text that can be scrolled and selected

(highlighted) with the mouse. This editor is

used extensively in xruif. The text editor

is a data entry field with a prompt to one

side. It is used to enter simulation and

base date values. A message box editor pops

up a window containing an icon, some text,

and some push buttons. It is used to force

answering "Are you sure?" questions. A group

box editor is simply a rectangle with a label

at the top to surround a group of editors and

visually associate them.

The title panel also uses the static raster

editor to display pixmaps, such as the NASA

logo, the WPL logo, and the DEMOS icon. The

DEMOS icon is also used to represent the
xruif window when it is closed.

There are several advantages to using

separate panels. First, it modularizes each

component of the user interface. Any panel

can easily be modified and rearranged without

affecting the other panels. Second, the X

window events "entry" and "leave" are used to

determine when the pointer goes into or out

of a panel. This allows each panel to do its

own input processing instead of having to

handle all inputs in one routine. Third,

each panel can size and create its own edi-

tors. Finally, panels can be redisplayed

independently, each handling its own "expose"

events.

Xruif employs an on-line help facility for

information on each panel. The title bar of

each panel has a help icon, which, when

selected, brings up the help panel in the

work area, overlaying the previous panel.

When the help panel is terminated, the previ-

ous panel is restored. The help panel con-

tains scrollable help text, plus a help index

listing all help screens. Selection of a

help index item displays that panel's help

screen. The help screens are loaded at ini-

tialization from ASCII text files. For

DEMOS, help screens were formatted by the

"nroff" utility and can be easily customized

by the user.

2.3. Model Manager

The model manager is responsible for servic-

ing user interface requests, loading data

models, managing simulations, and generating

accurate visual displays of a modeled scene.

Its implementation employs the PHIGS stan-

dard, as well as PHIGS+ extensions for light-

ing and shading. The Raster Technologies

PHIGS+ subsystem off-loads a number of

graphic functions including model hierarchy

management, traversal, and rendering/display.

Many functions are performed in firmware.

Using this graphics architecture, the model

manager is able to concentrate on a variety

of control functions associated with managing

multiple, asynchronous simulations. The

model manager is composed of three major ele-

ments: Scene Construction, Simulation Manage-

ment, and View Generation.

2.3.1. Scene Construction

After communications have been established

with the user interface task, the model

manager begins by constructing an in-memory

tree representation of a selected scene

hierarchy. A user selects a scene by choos-

ing a top-level description file. The model

manager reads this verb-based description

file in order to build an internal represen-

tation of the scene. Description files may

reference other description files. In this

manner, a complex external model hierarchy

may be defined. The model manager will

recursively read these files until the entire

scene tree is built. Using this technique,

generic scenes may be developed and processed

by a general modelling subsystem.

145
ORIGINAL PAGE iS

OF POOR QUALITY



Besides model hierarchy construction,

description files provide additional informa-

tion which is attached to the model's

geometric definition. This separation of

model geometry and model attributes allows

models to be tailored for rendering perfor-

mance versus realism. Each file has a speci-

fied type, which determines how the remaining

commands are to be interpreted. A variety of

types are currently supported: 'model',

'eye', 'camera', 'scene', 'light', and

'ghost'.

A 'model' description file provides the fol-

lowing information: the model units, initial

placement, display options (polygon, vector,

polyline), shading method (flat, Gouraud),

surface properties, color model, hidden-

line/hidden-surface options and an optional

reference to a data file containing the

actual geometric model. Model attributes are

inherited from parent models. Typically, a

top level model node provides overall model

information and attributes while children

nodes reference individual submodels and

define how they are geometrically related to

their parent.

An 'eye' or 'camera' description file pro-

vides the definition of viewing parameters

for a single viewpoint. The only distinction

made between eyes and cameras is that cameras

represent physical optical devices while eyes

define a synthetic viewpoint. Both are

treated as submodels, positioned relative to

their parent node. By attaching eyes and

cameras to a geometric model, a wide variety

of views can be supported. This viewing

mechanism forms a major element within the

model manager. A majority of the model

manager's computational effort is spent main-

taining selected views. The following infor-

mation can be defined for an eye or camera:

camera position, camera orientation, perspec-

tive reference point, view distances (front,

view, back), projection type (parallel, per-

spective), and viewing window parameters.

A 'scene' description file defines global

scene characteristics. Specifically, it pro-

vides the following information: scene light-

ing method (ambient, diffuse, specular,

none), true or pseudo color display indica-

tor, background screen color, viewport edge

characteristics, viewport titles flag, ini-

tial viewport definition(s) and background

colors, screen aspect ratio, Normalized Pro-

jection Coordinate the (NPC) window and Dev-

ice Coordinate (DC) viewport in which NPC

window will be mapped. Many of the developed

scenes refer to a common scene node since

this information rarely changes. Changing

the scene lighting and the number of

viewports can drastically affect scene

display rates. The DC viewport provides the

capability to place the graphic display into

a selected portion of the screen. This

becomes important when the RGB signal is con-

verted to video via converter boxes such as

Genlock or RGB Technologies VideoLink.

A 'light' description file defines a single

light source. Ambient, infinite, point, and

spot light types are supported. Depending on

the light type, a number of lighting charac-

teristics may be defined, such as color,

location, direction, concentration exponent,

and cone of influence. Adding additional

lights seems to have only a minimal computa-

tional effect on the overall rendering pro-

cess. DEMOS currently employs a single

infinite light source - the Sun. Additional

lights might be added to have the orbiter

always visible to the user even though it is

positioned on the dark side of the planet.

A 'ghost' description file defines an object

which assumes and maintains a position rela-

tive to its immediate parent node. As its

name implies, a ghost object is an invisible

object which cloaks another object. Ghost

objects are semi-attached to their parent.

This is, they only receive positional

updates; attitude transformations are not

applied. These type of objects are typically

used to establish a set of viewpoints associ-

ated with an orbiting vehcile. Since these

viewpoints only accept positional updates,

and therefore move along with an object, they

are capable of viewing rotational (attitude)

changes to the object in which they are con-

nected. This feature provides a flexible

viewing mechanism and is used to support

visual verification of spacecraft orienta-

tion, as well as, Earth rotations from a

point in space.

During description file processing and

hierarchical scene tree construction, a set

of linear lookup tables are developed in

order to minimize the model editing process.

Each table entry contains a unique object

name followed by a tree node pointer. The

use of this pointer eliminates unnecessary

tree traversals by the model manager when

updating an object's position and attitude.

In addition, the PHIGS structure ID is

obtained from the tree node, and is used to

perform PHIGS editing. The reason in-memory

scene tree structures are edited along with

the PHIGS structures is to facilitate the

formation of a particular view from an eye or

camera. The PHIGS specification allows

structure inquiries to obtain this informa-

tion; however, the PHIGS implementation

currently used does not support this opera-

tion. Combining an in-memory tree structure

and the sorted lookup tables provides an

efficient framework for model editing. The

linear table provides efficient model search-

ing while the in-memory tree structure pro-

vides the necessary model hierarchy.

After the in-memory scene tree has been con-

structed, it is loaded into the PHIGS Central

Structure Store (CSS) . The CSS provides a

central database where graphics information

is stored and edited. In order to construct

the PHIGS database in a contiguous manner,

the model manager recursively traverses the

in-memory scene tree and loads each model and

light node into the CSS. If a child node

representing a model, ghost, or light is

referenced within the current node, a PHIGS

structure execution command is issued to link
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this child node to its parent. Eye and cam-

era nodes are ignored during this PHIGS load-

ing process and are managed separately.

2.3.2. Simulation Management

The processing architecture of the model

manager is based on a state machine approach

employing time and events. To manage multi-

ple, asynchronous simulations, the model

manager must maintain its own internal clock.

This clock is established by the user issuing

the system start time command. Once the time

is set, the model manager begins propagating

it by a discrete unit. In addition, the

model manager automatically spawns a Sun and

Moon simulation task on previously defined

workstations. The user also determines how

quickly time should propagate and the amount

of Earth rotation per display update. This

clock is used to synchronize all events

within the model manager.

Simulations are initiated upon reciept of a

user interface request. The model manager

retains the specified simulation information

within an internal state structure. These

structures hold and maintain information nec-

cessary for communications, groundtrack

requests, and position and attitude requests.

States transition from one state to another

due to an occurrence of an event. For exam-

ple, a simulation is not started until the

internal clock is equal to or greater than

the simulation starting time. Once started,

the simulation, or monitoring element, tran-

sitions from the 'wait to start' state to the

'has started' state. Typically, simulations

enter a cyclic state where the model manager

continually requests their next position for

the current time of interest (e.g., the

internal system time). Since the model

manager makes all the requests, it controls

the rate at which simulation elements

respond. Simulation or monitoring elements

never send unsolicited information. This

greatly simplifies their control. In effect,

simulation management is handled via a master

/ slave approach rather than with the client

/ server relationship held with the user

interface. This control technique also

ensures the model manager is never inundated

with data from clients' simulations.

The notion of a time node was developed to

maintain an accurate visual display of multi-

ple moving objects. When time is propagated,

a node is allocated and placed on the end of

a time list. For each time unit, a request

is generated for each active simulation ele-

ment in order to update its position, atti-

tude, or light direction. These requests are

attached to the current time node. When the

simulation element responds with appropriate

data, the corresponding model is updated to

reflect this update, and the request is

removed from the appropriate time node. Once

all requests for a particular time node have

been removed, the time node is freed and the

scene is in a correct state for the next

display. If all requests for a time node

have been removed, and an earlier time node

still contains outstanding requests, then

2.3.3. View Generation

The model manager spends the majority of its

processing maintaining accurate visual

representations of the scene being modeled.

It supports a wide array of scene viewing

capabilities. Under user control, the graph-

ics screen may be partitioned into a number

of viewports. Each viewport is treated as an

empty slot in which an eye or camera may be

assigned. Only one view (eye or camera) may

be assigned to a particular viewport at any

one time; however, a view may be assigned to

multiple viewports. Viewports have a back-

ground color, and are outlined to indicate

their screen coverage. In addition,

viewports have the property of visibility.

The user may wish to temporarily turn off a

particular viewport to improve display rates

or to ignore uninteresting views. Viewports

which have an assigned eye or camera may have

a small title displayed to help identify the

particular view. These titles are extracted

from the corresponding eye or camera nodes

from within the scene tree.

During the scene tree construction phase, a

default viewport configuration file and a

default view assignment file are read to pro-

vide an initial viewing framework. This

framework is used to view the scene prior to

starting simulations. Once a scene is

loaded, the user interface requests a list of

all available viewport configurations and

their current view assignments. Given this

information, the user may freely assign views

to viewports, toggle viewport visibility, or

select another viewport configuration.

The model manager constructs a view for a

given viewport in the following manner.

First, a view is assigned to a particular

viewport by copying the specified viewing

parameters to the desired viewport data

structure. A view mapping matrix is then

computed for this viewport. The next step

involves the actual view generation, given an

arbitrary viewing position in modelling coor-

dinates. Since the eye coordinate system is

fixed, it is necessary to transform the world

coordinate system into this eye coordinate

system. The scene tree contains all informa-

tion concerning model hierarchy, and is

therefore used to compute thls transformation

by traversing the scene tree backward from

the eye or camera node to the tree's root

node. Initially, the eye's orientation is

set to the identity matrix. This matrix is

then transformed by applying inverse

transformations while traversing up the tree.

Once the root node is reached, a final orien-

tation matrix has been formed, and it is then

associated with the corresponding viewport.

The viewing computation is then completed by

loadinq the newly computed viewing represen-

these earlier time nodes are destroyed -

leaving only the latest information. By

employing time nodes and multiple requests

per time unit, the accuracy of the visual

display is ensured.
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tation and allowing PHIGS to traverse the

hierarchical model contained in the CSS. In

order to minimize the view construction, only

the assigned, visible, viewports are com-

puted.

2.4. Simulation Components

The simulation tasks provide the model

manager with the necessary data to maintain

an accurate representation of the Sun, the

Moon, any number of orbiting vehicles, and

the orientation of the Earth within the M50

coordinate system (the basic JSC inertial

coordinate system).

Currently, three types of simulation tasks

are supported: a Sun simulation, a Moon

simulation, and an orbiting vehicle simula-

tion. Simulation tasks are started by the

model manager via a remote procedure call.

They are typically deployed on workstations

providing floating point hardware. Once a

simulation has successfully started and has

established communication with the model

manager, it is sent a packet containing all

information required to begin processing.

A simulation component of DEMOS consists of

up to five functional elements:

I) Compute the Rotation-Nutation-

Precession (RNP) matrix. The RNP

matrix relates the M50 coordinate

system to a coordinate system fixed

to the Earth.

2) Generate from one to ten orbits worth

of ground tracks for the orbiting

vehicle

3) Determine the position over the Earth

of the orbiting vehicle.

4) Determine the attitude of the orbit-

ing vehicle axes relative to an

Earth-fixed coordinate system so that

the vehicle maintains a pitch, roll,

and yaw of zero degrees relative to

the UVW local orbital reference frame

(U is a unit vector in the direction

of the radius vector, W is a unit

vector in the direction of the angu-

lar momentum vector, and V is the

unit vector which forms a right-

handed system). (Note that the body

axis system for this application has

the x-axis out the nose of the

orbiter, the z-axis out the top of

the orbiter, and the y-axis out the

left wing).

5) Determine the location of the Sun and

the Moon.

2.4.1. Computation of the RNP Matrix [12]

The fundamental transformation matrix for the

simulation component is the RNP matrix. It

incorporates all of the precession, nutation

and rotation changes that have affected the

orientation of the Earth in inertial space

since 1950. It relates the orientation of an

axis system fixed to the Earth relative to

the M50 coordinate system. The user inter-

face task provides the base-time-of-interest

values. These include: the year, month, day,

hour, minute and second. The time difference

between Ephemeris Time and Universal Time

Corrected is also provided.

Once the input base time has been obtained,

the computation of the RNP matrix proceeds as

follows:

I) Calculate the Julian Universal Date

and the Julian Ephemeris Date.

2) Compute the three precession angles.

3) Compute the precession transformation

matrix, P.

4) Compute the nutation angles.

5) Compute the nutation in longitude.

6) Compute the nutation in obliquity.

7) Compute the nutation transformation

matrix, N.

8) Compute the rotation transformation

matrix, R, which orients the X-axis

(through Greenwich) for the base time

of interest.

9) Compute the RNP matrix by multiplying

the R, N, and P matrices together.

i0) Perform the z-axis rotation to rotate

the RNP matrix back to December 31, 0

hours, 0 minutes, 0 seconds of the

previous year.

This fundamental RNP matrix is employed to

transform an M50 vector (for a given time)

into an Earth-fixed vector. This is

extremely important for the generation of

ground tracks or for positioning a vehicle

over the surface of the Earth.

2.4.2. Generation of Ground Tracks

The user interface task provides the number

of orbits worth of ground tracks that are to

be displayed. This number is passed to the

ground track simulation element where 180

sets of Earth-fixed latitude and longitude

points are generated for each orbit. These

points are passed to the model manager which

then displays the ground tracks on the 3D

Earth Model.

Each Earth-fixed latitude and longitude point

is computed as follows:

i) Propagate the state vector to the

particular time along the ground

track (the delta time between propa-

gation steps is the period of the

orbit divided by 180 points).

2) Calculate an updated RNP matrix using

the time of the state vector.

3) Transform the propagated M50 position

vector into and Earth-fixed position

vector using the RNP matrix.

4) Calculate the Earth-fixed latitude

and longitude from the Earth-fixed

position vector.

The ground %rack simulation element either

uses a two-body propagation method or a modi-

fied Analytic Ephemeris Generator (AEG) pro-

pagation method to generat 9 the state vectors

from which the latitude and longitude points

are computed. The user specifies which pro-

pagation method is desired when the initial

state vector is entered.
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2.4.3. Computation of Position

The user interface provides values for the

initial simulation. The object could be the

shuttle orbiter, the Space Station, or any

other satellite of the Earth. The user

decides the choice of units (e.g. feet,

meters, or Earth radii) and the initial time

of the 'state'. This 'state' can be entered

either as M50 position and velocity vectors

or as M50 Keplerian orbital elements (semi-

major axis, eccentricity, inclination, longi-

tude of the ascending node, argument of peri-

gee and mean anomaly). Finally, the choice

of propagation method is entered. This can

be either two-body or AEG propagation. When

the simulation element is initialized, addi-

tional orbital parameters are computed which

will be utilized in the propagation of the

position and velocity. In the case of two-

body propagation [6], the additional parame-

ters include unit vectors in the two-body

orbital plane. An AEG propagation is ini-

tialized by computing a set of 'invariant'

elements which can be used to propagate posi-

tion and velocity including the effects of

the J2, J3, and J4 gravitational harmonics of

the Earth. The AEG propagation method is a

scaled down version of Edgar Lineberry's Ana-

lytic Ephemeris Generator [8] which is used

in the MCC to support missions. The scaled

down version computes the effects of the

short-period terms on the orbital elements.

The version implemented for DEMOS does not

include the calculation of drag effects.

When a time is given to the position computa-

tion element, Get_position, the position and

velocity are propagated to that time. This

time may be sent to Get_position either by

the ground track computation element or by

the model manager. Once the position and

velocity are propagated, a series of coordi-

nate transformation routines rotate these

vectors into an Earth-fixed coordinate sys-

tem. The Earth-fixed position vector is then

used to calculate the Earth-fixed latitude

and longitude.

2.4.4. Computation of Attitude [9]

After the position is obtained, the pitch,

roll, and yaw attitude angles of the orbiting

vehicle relative to the Earth-fixed reference

frame are computed to maintain the vehicle

attitude of its body axes relative to the UVW

local orbital reference frame. This "UVW

hold" attitude causes the shuttle to appear

on the graphics screen with its nose parallel

to the ground tracks and the plane of the

wings perpendicular to the radius vector.

This allows the payload bay doors to be visi-

ble to a viewer looking down on the shuttle

as it orbits the Earth.

2.4.5. Computation of the Sun Position

[2,3]

The model manager has the capability to pro-

vide lighting over the surface of the Earth,

by knowing where the Sun is relative to the

Earth-fixed coordinate system. The Sun posi-

tion computation element, Get sun, calculates

the Earth-fixed position of the Sun by the

following steps:

I) Calculate the precession

2)

4

5

6

7

8

9

I0)

Ii)

12)

angles and

the precession matrix P, for the time

of interest.

Calculate the Mean Longitude of Peri-

gee for the Sun relative to the Mean

Equinox of Date.

Calculate the Mean Anomaly for the

Sun relative to the Mean Equinox of

Date.

Calculate the eccentricity of the

Earth's orbit around the Sun.

Solve Kepler's equation for the

Eccentric Anomaly of the Sun.

Calculate the True Anomaly of the

Sun.

Calculate the Mean Obliquity of the

Ecliptic.

Calculate the longitude of the Sun in

the Ecliptic plane.

Calculate the magnitude of the radius

vector from the Earth to the Sun.

Compute the position vector of the

Sun in Ecliptic coordinates.

Apply the precession matrix, P, to

this Ecliptic vector to compute the

position vector for the Sun in M50

coordinates.

Rotate this M50 position vector using

the RNP matrix to Earth-fixed coordi-

nates and extract the Earth-fixed

latitude and longitude of the Sun.

Computation of the Moon Position

The model manager can move one of its

viewpoints sufficiently far from the Earth-

Moon system so that both the Earth and the

Moon are visible in the same view. If the

system time is accelerated the Moon can be

seen to orbit the Earth.

The Moon position computation element,

Get moon, calculates the Earth-fixed position

of the Moon by the following steps:

i) Compute the precession angles and the

precession matrix, P.

2) Calculate the nutation angles.

3) Calculate the Ecliptic latitude,

Ecliptic longitude, and parallax of

the Moon using Fourier Series Expan-

sions (sine and cosine terms) of com-

binations of the nutation angles.

4) Compute the magnitude of the radius

vector from the Earth to the Moon.

5) Compute the position vector of the

Moon in the Ecliptic plane.

6) Rotate the Ecliptic position vector

into the M50 coordinate frame using

the precession matrix, P.

7) Rotate this M50 position vector using

the RNP matrix to Earth-fixed coordi-

nates and then extract the Earth-

fixed latitude and longitude of the

Moon.

Eventually, the position, velocity and atti-

tude information for the orbiting vehicle

will be obtained over the LAN from the Mis-

sion Operations Computer (MOC) or Calibrated

Ancillary System (CAS). The internal units

for the simulation component have been kept

compatible with the Ground Based Space Sys-
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tems (GBSS) internal units on the MOC to ease

this transition.

3. CONCLUSION

DEMOS is a successful implementation of 3D

modelling employing accurate simulations of

the Earth, Sun, Moon, and any number of

orbiting objects. It provides a visualiza-

tion tool which has the capability to simu-

late / monitor orbiting objects and to

display a realistic scene in an acceptable

time period. A flexible viewing system

allows flight controllers to view objects

from a variety of viewpoints. Vehicle cam-

eras and synthetic eyes may be defined to

inspect spacecraft activity from arbitrary

view positions. The distributed architecture

provides the framework for future application

extensions. Application software employs the

latest workstation standards, maximizing its

lifecycle while minimizing any rehosting

costs. Simulation techniques are implemented

from proven algorithms.
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Abstract

The Part Task Trainer program (PTT) is a

kinematic simulation of the Remote

Manipulator System (RMS) for the orbiter.

The .purpose of PTT is to supply a low cost

man-in-the-loop simulator, allowing the

student to learn operational procedures

which then can be used in the more expensive

full scale simulators. PTT will allow the

crew members to work on their arm operation

skills with out the need for other people

running the simulation. The controlling

algorithms for the arm were coded out of the

Functional Subsystem Requirements Document

to ensure realistic operation of the

simulation. Relying on the hardware of the

workstation to provide fast refresh rates

for full shaded images allows the simulation

to be run on small low cost stand alone work

stations, removing the need to be tied into

a multi-million dollar computer for the

simulation. PTT is not intended to replac6

the full scale simulators but to augment the

training process and reduce the load of the

full scale simulators, especially when the

student is learning new procedures and is

error prone. PTT will allow the student to

make errors which in the full scale mock up

simulators might cause failures or damage

hardware. On the screen the user is shown a

graphical representation of the RMS control

panel in the aft cockpit of the orbiter,

along with a main view window and up to six

trunion and guide windows. The dials drawn

on the panel maybe turned using the dials on

the dial box to select the desired mode of

operation. The inputs controlling the arm

are read from a chair with a Translational

Hand Controller (THC) and a Rotational Hand

Controller (RHC) attached to it.

INTRODUCTION

Part Task Trainer (PTT) is a kinematic

simulator for the shuttle remote manipulator

system(RMS). This paper will discuss what

PTT does, it's history, uses, operation,

design and the future of the program.

The controlling algorithms for the arm are

coded from the functional subsystem software

requirements document (FSSR) to ensure

operation as close to the real arm as

possible. Five of the computer supported

modes and one of the non-computer supported

modes are modeled. These modes supply the

student with training in the major RMS modes

of operation.

HISTORY

PTT started out as two separate programs on

two separate machines. The graphics were

done on an IMI500 in wire frame and the

simulation on an HP9000. When the Silicon

Graphics 4D/60 was announced it was decided

these two programs could be merged and

provide better functionality. The

controlling algorithms were coded from the

FSSR and merged with already existing

display code. This allowed us to deliver a

limited working version in two months.

USES

PTT will be used in the training cycle for

the crew members. It will provide

inexpensive hands on training in an

environment were mistakes can cause no

damage to hardware. In the full scale

simulator if the student makes a misJ_ake

damage to the equipment could be costly.

But with PTT the worst damage only means

restarting the simulator not rebuilding the

hardware. PTT is not meant to replace the

large scale simulators, but to augment them.

The large scale simulators are expensive to

run (computer time, support personnel), but

PTT needs no support personnel, it is all

self contained. It will allow the crew

members more time to work with the arm and

learn the different modes of operation. It

will be used to maintain proficiency of

operation, warm up for the integrated

simulations and flight specific training. It

is also used for engineering studies of

reach limits and space station assembly.
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OPERATION

PTT started out originally to be only a

single joint operation simulator. But with

the capability of the machine for floating

point operations it was decided to include

the computer supported modes. In single

joint mode the operator is working with only

one joint at a time. Therefor, the

movements of the end effector will be an arc

rather than a straight line as in the

computer supported modes

In single joint mode the user selects a

joint with the joint knob and inputs a

positive or negative rotation with a toggle

switch on the chair. There is no joint

software reach limit checking done since

this mode is used to drive the arm out of

reach limits. In four of the computer

supported modes (orbiter unloaded, end

effector, orbiter loaded and payload) the

translational hand controller (THC) and the

rotational hand controller (RHC) are used to

control the point of resolution (POR) . The

POR is the point about which the rotations

are calculated, generally this is the tip of

the end effector or a point located inside

the payload. The translations translate the

POR in a straight line along the axis of the

coordinate system and the rotations are done

about the POR. If the arm is in orbiter

unloaded mode the coordinate system used is

the orbiter's. In orbiter loaded mode the

coordinate system is the orbiter's plus any

offset added by the user for the POR. In

end effector mode the coordinate system is

the tip of the end effector. In payload

mode the offset is added to the end effector

position for the final POR. The THC provides

positive and negative input on all three

axis. The RHC provides positive and

negative rotations for pitch, yaw and roll.

The last computer supported mode, operator

commanded (OCAS), deals with the POR the

same way as the other four. The difference

is in the input for movement. In OCAS the

user enters the position and attitude

desired for the end effector. If it is a

valid position and attitude, meaning the arm

can reach'it, the software attempts to drive

the POR to this position and attitude in a

straight line. The software does no

checking for reach limits, singularities or

interference when checking the final

position and attitude. But reach limits and

singularities are checked when the arm is

being driven to the new position and if one

occurs the user must deal with it.

Interference between models is left up to

the user just like the real RMS.

During the simulation the user has the

option of practicing the grapple and release

operation. When the grapple trigger is

activated a list of possible grapple figures

is checked to determine which one should be

grappled. The grapple fixture must be

within the constraints of the real arm,

these are -4 < [x,y,z] < 4 and -15 < [pitch,

yaw, roll] < 15. If the grapple is

determined to be valid the arm is drawn to

the grapple fixture and the payload is

relinked dynamically to the arm. In other

words the software determines the new

position and attitude of the payload

relative to the arm for the drawing

hierarchy. This procedure can be reversed

when a release is done. The new position

and attitude relative to NULL is calculated

for the payload and the hierarchy is changed

to reflect this change. When the arm is

going through a grapple or release sequence

it takes approximantly the same amount of

time as the real arm does to help reduce

negative training.

These are the basic modes of operation for

the RMS. Now we will discuss the link to

the graphics interface.

DESIGN

The interface to the simulator is a graphic

representation of the control panel for the

RMS in the aft cabin of the orbiter, an

alpha-numeric terminal, a buttons and dials

box, the mouse and a specially designed

chair with an RHC and a THC attached to it.

The lower left quarter of the screen

contains the panel. This is used to

indicate which mode of operation is active.

The actual panel has three dials for the

mode control. These dials have been mapped

to the dials box. Movement of the dials is

reflected by the dials on the screen. The

other buttons and toggle switches on the

panel which are needed for the simulator are

mapped to the buttons box. The alpha-

numeric terminal is used to simulate the

auxiliary display in the aft cabin. Two of

the possible screens have been modeled. The

DISP94 and SPEC96 screens. These are useed

for input for operator cormnanded mode and

position and attitude information display.

The buttons and dials box is used for moving

the camera around in X, Y, and Z,

manipulating the dials on the panel,

changing the active camera, and the switch

input for the panel. The mouse is used for

the toggling between wire frame and shaded

views, and enlarging any of the view

windows up to full screen or back. Also, in

setup mode it is used to adjust models,

cameras, lights and other operational

information. The chair with the RHC and THC

is used for arm control input. The chair

communicates with the simulation over an

RS-232 line.
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Thetop left quarter of the screen is the
main view window. This windowcontainsthe
view from the active camera. The active
camera can be changedto preset camera
positions with the buttons or movedaround
in X, Y, and Z with the dials. Theright
side of the screen is used for special

purpose windows. These windows are views of

the trunions on the payload and the

associated guides in the payload bay. These

windows provide an unseeable view in the

real world. They assist the student when

doing single joint operations.

There are two types of models used in PTT.

Those predefined by the software, the panel,

and those built by another program and read

in, the orbiter. 98% of the models read

into PTT were created with the in house

model building package Solid Surface Modeler

(SSM).

The predefined models are the models used to

draw the panel. These were hand designed

and placed on the screen. Only the parts of

the panel which change are updated. If the

parameter dial is turned the parameter dial

on the display will change as well as the

number readout, but nothing else is updated.

The models read into PTT are drawn in the

view window. All of the models are update

in the main view every time. Each of the

special purpose windows has a list of models

associated with them, if any of the models

in the list are moved then the window is

updated. Otherwise it is left unchanged.

The models read in are linked together in an

hierarchy which tells the program where to

draw each model. Each node in the hierarchy

has a flag which is set if the position and

attitude change. If so, every node that is

a child to this node must be redrawn.

One of the design goals deals with the speed

of updating the screen. Only drawing the

models which move allows the graphics engine

to do as little work as possible when

updating the screen. Another design goal

was to minimize negative training. Since

mistakes on orbit can be costly or even

dangerous all training is done as close to

the actual procedure used in flight as

possible for consistency. Some examples of

this are labeling the dials and buttons on

top instead of underneath. All the switches

and knobs in the orbiter are labeled on top.

Also the length of time is takes the

grapple/release sequence. Since the arm can

be moved with this operation is taking place

the time in the simulator is approximantly

the same amount used for the real arm so the

user does not get in the habit of moving the

arm to soon.

The justification for PTT is simple. Most

of the code was already written but used in

different programs. By using this code the

maintenance of the code is relatively easy.

It also means enhancements to the code are

just as easy. The cost of operation is

minimal. Once the student has an

introduction course there should be no more

need for instructors. Also the cost of the

machine is small to the cost of the large

simulators.

The future ef PTT looks promising. It will

go into the training cycle in April. So far

everybody dealing with training who has seen

PTT has liked it and are anxious to get it

into the training cycle. As for program

enhancements another view window and

dynamics have been discussed. We are hoping

to get a Silicon Graphics 240GTX which is a

4 processor parallel machine. We feel these

enhancements would greatly improve the

ability of the simulator. We also have

several different versions of PTT. One

allows the student to work with a two arm

configuration. Another version of PTT is

being developed for the Space Station

Freedom arm.

With the ease of use, ease of modifications

and speed of the simulator PTT should be

very useful for training, maintaining

proficiency and engineering studies.
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ABSTRACT

This paper describes a demonstration of an integrated
fault propagation model for Space Station Freedom.
The demonstration uses a HyperCard graphical
interface to show how failures can propagate from
one component to another, both within a system and
between systems. It also shows how hardware
failures can impact certain defined functions like
reboost, atmosphere maintenance or collision
avoidance. The demonstration enables the user to

view block diagrams for the various space station
systems using an overview screen, and interactively
choose a component and see what single or dual
failure combinations can cause it to fail. It also

allows the user to directly view the fault model,
which is a collection of drawings and text listings

accessible from a guide screen.

Fault modeling provides a useful technique for
analyzing individual systems and also interactions
between systems in the presence of multiple failures
so that a complete picture of failure tolerance and
component criticality can be achieved.

1.0 INTRODUCTION

This paper illustrates a HyperCard user interface for
a failure propagation model of the Space Station
Freedom integrated systems. It uses as an example a
typical session of investigating the failure tolerance
of the integrated Space Station Freedom systems. It
also provides some background on how the failure
model and HyperCard interface was developed.

The failure propagation model was coded and solved
using Digraph Matrix Analysis, a proprietary
software toolset. The results were transferred from

a VAX to a Macintosh and there provided the
required data to the HyperCard graphical
environment.

This project was performed for the Guidance,
Navigation, and Control Systems Branch of the

Avionics Systems Division of the Johnson Space
Center as a prototype for failure modeling tools
which can be used for Space Station Freedom.

2.0 ABOUT FAILURE MODELING

The failure model which is behind the HyperCard
user interface contains information about failure

propagation in Space Station Freedom systems. This
information is accessed by the HyperCard stack on
command from cues provided by the user.

The failure model is in the form of a directed graph
(digraph), which is a network model of a system
pictorially representing failure propagation
throughout the system. The digraph consists of
nodes representing system components, and arrows
representing failure propagation from one
component to the next. Inputs to a node represent all
things that component depends on for proper
functioning. Conversely, outputs from a node
represent failure propagation from that component to
other components.

AND gates are used to indicate functional
redundancy. For example, a computer might be
supplied with electrical power from two busses. This
would be drawn as two node inputs to an AND gate
feeding the computer. Both nodes must fail before
the computer fails.

Digraphs can be used to model anything from
electrical diagrams to logic diagrams, fluid diagrams,

PRECEDING PAGE [3 r ........
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mechanical systems, procedures or end-to-end
functions. Failure tolerance can be studied, when the

system digraph is completed, by looking at the
failure propagation results to see either what failures
a given component failure can cause or what other
failures can fail a given component. The latter
method (the more difficult problem) is how this
demonstration presents the information. Single
failures or double failures which can result in the

failure of the target component are displayed on the
screen.

created on HyperCard stacks, using button names
which corre,;ponded to the digraphs. Of the total
model, 545 buttons were chosen for display. The
following section shows how the result works.

4.0 HYPERCARD DEMONSTRATION
TUTORIAL

4.1 Navigating Through the Stack

3.0 SPACE STATION FREEDOM FAULT
MODEL

The overall fault model used in this demonstration

contains about 600 nodes representing orbital
replacement units, data lines, piping, tankage and
other components of the Space Station Freedom
systems. The purpose of this demonstration is to
provide a relatively small model which nevertheless
illustrates the highly integrated nature of the Space
Station Freedom systems. Therefore, the models
have been kept fairly high-level. Several high level
functions, felt to be the most critical, are also
modeled by showing their dependence on the
systems. Systems and functions included in this
model are:

Data Management System (DMS)
Guidance, Navigation and Control (GN&C)

Communications and Tracking (C&T)
Thermal Control System (TCS)

Environmental Control and Life Support
System (ECLSS)

Propulsion
Electrical Power System (EPS)

Extravehicular Activity System (EVAS)
Reboost

Attitude Control

Docking
Collision Avoidance

Fire Suppression
Atmosphere Maintenance

The initial fault modeling was done by drawing the
digraphs on paper, based on the system block
diagrams. The failure propagation modeled was
based on judgements about whether a particular
functional connectivity implied any failure
propagation. The resulting drawings were then
translated into text listings for use with the Digraph

Matrix Analysis software, which computed the
failure "reachability". Next the block diagrams were

Figure 1 ilh, strates the opening card. This card is
the first card the user sees. It contains an illustration
of Freedom Station as a visual cue that the user is at

the top level, plus a title bar across the top, a home
button, and credits across the bottom. This card
gives the user four options--INTRODUCTION, RUN
MODEL, VIEW MODEL and FINISH. Clicking on
INTRODUCTION will take the user to a section

containing tutorial text. The RUN MODEL button
starts the demonstration. The VIEW MODEL button

allows the user to view the fault model drawings and
listings. Clicking on FINISH will exit HyperCard.

SPACE STATION FREEDOM INTEGRATED FAULT MODEL I

Figure 1
OPENING CARD

Figure 2 shows the introduction card. Instructions
printed across the top tell the user what to do. This
card guides the user to four areas of tutorial
information:

PART 1
HOW TO USE THIS DEMONSTRATION

PART 2
ABOUT DIRECTED GRAPH FAULT MODELING

PART 3
WHAT HAS BEEN MODELED?
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PART 4
SYSTEM FAULT MODELING IN THE

SPACE STATION FREEDOM PROGRAM

Part 1 helps the user learn to use the actual
demonstration. Part 2 explains in general how

directed graphs are used to model failure
propagation. Part 3 details how the space station
systems were modeled, and what source materials
were used. Part 4 then gives a perspective on how
fault modeling may be used in designing and

Figure 3
"HARDWARE OR FUNCTIONS?" CARD

Figure 2
INTRODUCTION CARD

operating Space Station Freedom. These cards all
contain text in a scrolling field. The RETURN
button on these four cards will return the user to the
introduction card. The RETURN button on the
introduction card will then allow the user to return

to the opening card. The introduction portion of the
demonstration is optional. The user can go directly
to the demonstration if desired by clicking on RUN
MODEL on the opening card.

Figure 3 shows the result of clicking on RUN
MODEL from the opening card. It has two buttons
to allow the user to chose between two types of
demonstration. The HARDWARE button goes into a
demonstration in which individual hardware items

are chosen as the ultimate targets of other hardware
failures. The FUNCTION button takes the user into
a demonstration which shows how Freedom Station's

functions can be affected by various hardware
failures. It was felt that an entire card dedicated to

this choice would emphasize to the user the
distinction between the two types. The RETURN
button on this card allows the user to return to the

opening card if desired. This card will be referred
to as the "hardware or functions?" card.

Figure 4 shows the systems hardware card,
identified by its title bar across the top of the screen.
The user will see this card when the HARDWARE
button is chosen from the "hardware or functions?"

card. This card has a selection of Space Station
Freedom systems from which the user will go into
the demonstration. The user can view the block

diagrams for these systems by clicking on the desired
system. The SHOW DATA button allows viewing of
singleton and doubleton data from the previous target
chosen (an advanced feature). The VIEW
DIGRAPHS button allows the user to view the entire

digraph listing, taking the user to the same card as
does the SHOW MODEL button on the opening card
(a short cut from this card to the digraph). A
message box across the bottom informs the user to
click on one of the system boxes. MENU BAR will
turn off the Macintosh menu bar, which is useful on

SPACE STATION FREEDOH SYSTEMS HARDWARE

DATA ] GUIDANCE, [ ICOHHUNICATION:S I THERMAL
MANAGFPIENT NAVIGATION & AND CONTROL

SYSTEM CONTROL TRACKING SYSTErl

I s.o on.. I I

l EXTRAVEHICULAR] ENYIRONPIENT&L J ELECTRICAL
PROPULSION ACTIVITY CONTROL &LIFE POWER

SYSTFPI SYSTEH SUPPORT SYSTEM SYSTEH

CHOOSE A SYSTEM TO DISPLAY

Figure 4
SYSTEMS HARDWARE CARD

157



ORIGINAL PAGE [5

OF POOR QUALITY

Macintosh SE's or when making a presentation.
RETURN will take the user back to the opening card.

Figure 5 shows the functions card. This card will
allow the user to see how selected functions can be

affected by various hardware failures. It is reached
by clicking on the FUNCTIONS button from the
"hardware or functions" card. When one of the six

TSOPI TSOP2

NIU4 NIU5

SELECTAN OBJECTTO SEEWHATCAN AFFECTIT

Figure 6
GN&C SYSTEM BLOCK DIAGRAM

Figure 5
FUNCTIONS CARD

function buttons is clicked on, the associated systems
which have hardware supporting that function will be
highlighted across the bottom of the card. The user

can then jump over to those system drawings to view
the particular hardware combinations which can

cause the loss of the chosen function. The remaining
buttons have the same function as on the systems
hardware card.

4.2 Starting the Demonstration

Figure 6 shows a typical system block diagram
card, reached by clicking on one of the systems listed
on the systems hardware card. This particular card
shows the Guidance, Navigation and Control System
block diagram. Each object in this card represents a
node in the integrated Space Station Freedom fault
model. By clicking on one of the objects, the user
will be able to view all single and double hardware
failures anywhere in the station which can propagate
and eventually cause the failure of that object. These
objects are the lowest level of detail contained in this
demonstration, and when the user clicks on one of
them the demonstration becomes active.

Other buttons on this card include an ACRONYMS

button for displaying and removing a scrolling field

containing the full names of the objects on the screen,
a DIGRAPH button for viewing the associated
digraph drawing or listing directly, and a RETURN
button for returning to the systems hardware card.

When the user has clicked on a target object, in this
case the Star Tracker #1 (ST1), buttons for the
various systems will appear across the bottom of the
screen (DMS, GN&C, C&T, etc.) with instructions
on what to do. See Figure 7. Certain system
buttons will l:le highlighted. These are the systems
containing failures which can propagate to the target
object, and are therefore a guide to viewing the
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THE OLA('KENED SYSTEMS HAVE FAILURES WHICH

AFFECT THE SELECTED OBJECT-CLICK ON THEM

Figure 7
SYSTEMS WHICH REACH ST1

failure sources. When the user clicks on one of these

highlighted systems buttons, the card for that system
will be displayed.
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As shown in Figure 8, the user has gone ahead and
clicked on the GNC system button, which is the same
card from which the target was already selected.

Clicking on another system would have taken the
user to that card. The GNC card remains, but two
buttons, SINGLETONS and DOUBLETONS will

appear at the bottom of the card. Clicking on one of
these buttons will highlight one of the singletons or
doubletons on (or partially on) this card which can
reach the original target, ST1.

] IGO,OANCE.NAV,GAT,O,,"CONTROLS,STE.I
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original target will be independently highlighted.
The original target remains highlighted as a
reference.

Doubletons are viewed in a similar way. Figure 10
shows how two components, BIA13 and BIA16, are
highlighted as a double-point failure which causes
loss of the target, ST1.

IGUIDAHCE, NAVIGATION & CONTROL SYSTEM l ]ACRONYMS]

N

TSOPI ISOP2

NIU4 NIU5

SHOW NEXT DOUBLETON

SINGLETONS OOUBLETONS

Figure 8
GN&C CARD, READY TO DISPLAY

SINGLETONS AND DOUBLETONS TO ST1

In Figure 9, the user has clicked on SINGLETONS,
and the first singleton, Bus Interface Adapter #4
(BIA4), has been highlighted. A SHOW NEXT
SINGLETON button will appear at this time. This
button allows the user to cycle through all the single
point failures. The components which can fail the

Figure 10
BIA13 AND BIA16 COMPRISE A

DOUBLETON TO ST1

However, when a double-point failure involves
components on separate cards, another button, GO
TO OTHER DOUBLET, will appear to allow the
user to view the other half of the doubleton (a

doubleton is made up of two "doublets"). As shown
in Figure 11, the user has cycled through viewing
doubletons until BIA16 is highlighted. BIA16 plus
some other component off-screen are a double-point
failure which can reach the target, ST1.

IGUIDANCE. NAVIGATION & CONTROL SYSTEH [

TSBPI TSDP2

NIU4 NIU5

SHOW NEXT SINGLETON

Figure 9
BIA4 IS A SINGLETON TO ST1

[GUIDANCE. NAVIGATION & CONTROL SYSTEM]

N

TSDPI TSOP2

NIU4 NIU5

SHOW NEXT OOUBLETON

Figure 11
DISPLAY FOR AN OFF-SCREEN DOUBLET
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By clicking on GO TO OTHER DOUBLET, the user
will see the Electrical Power System block diagram
with a single component highlighted, as shown in
Figure 12. In this example, the alpha joint #I
(AJ1) is the second component of the pair. Thus
BIA16 plus AJ1 failing together, will cause loss of
ST1. A little inspection will show that BIA16 causes
loss of Alpha Rotary Joint Driver #2 (ARJ2) which
in tum causes loss of Alpha Joint #2 (A J2). So the
failure propagation path here involves loss of both
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Figure 12
A J1 IS THE OTHER DOUBLET

alpha joints and hence eventual total loss of power--
which will naturally fail ST2. More complicated
failure paths for other targets and sources might
require viewing the entire fault model, as explained
later.

There are other singletons and doubletons which
reach ST1, not all shown here. These are viewed in

the same way. At any point, the user can exit the
process and choose another target. This is
accomplished by clicking on EXIT until everything
has been progressively reset. When the user is
ready, clicking on RETURN will return him or her
to the opening card.

4.3 Viewing the Fault Model

While running the demonstration, the user might be
surprised that a particular singleton or doubleton can
reach a given target. Failure tolerance is not always
intuitively obvious. This demonstration allows the

user to investigate a particular failure scenario
further by viewing the fault model directly and
rapidly tracing a failure path back from the target to
the singleton or doubleton. Eventually, an
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understanding of the particular fault model contained
in this demonstration can be attained. The speed with
which the path can be traced demonstrates some of
the advantages of computer graphical fault modeling.

The digraph topview card used for this purpose is
shown in Figure 13. This card contains a guide to
viewing the Space Station Freedom fault model
drawings and source listings. It is reached by
clicking on the VIEW MODEL button on the
opening card, or the VIEW DIGRAPHS button on
either the systems hardware or functions cards.

"'ROWD"EJlDIRECTED 6ARPH FAULT MODEL TOPVIEW

Figure 13
FAULT MODEL TOPVIEW CARD

The card contains a number of buttons which identify
portions of the digraph. By clicking on any of these
buttons, the user can view the associated portion of
the digraph. This is useful for understanding how
the fault model really works. The user can look
through the digraphs to find the target chosen on a
previous run, and trace back the failure propagation
along the directed graph.

The systems buttons are across the top of the card.
Interfaces between systems are identified in a matrix
in the center of the card. Critical functions buttons

are found across the bottom of the card. The loop
blockage digraph has a dedicated button. The

HARDWARE and FUNCTIONS buttons at the top
will return the user back to the original cards.
RETURN will take the user back to the opening card.

As an example, suppose the user wanted to trace the
failure path from the doubleton pair BIA16, AJ1 to
the target, ST1 as encountered in one of the examples
above (Figures 11 and 12).

Figure 14 shows one of the digraph portion
illustrations from which to start, in this case part of
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GN&C DIGRAPH

20f2

Figure 14
GN&C DIRECTED GRAPH

the GN&C system. A short-cut from the GN&C
block diagram would have been to use the DIGRAPH
button from that card (not available while the
demonstration is active).

There are several active buttons across the top of
Figure 14. The TOPVIEW button allows the user
to return to the TOPVIEW card. ACRONYMS lists

the acronyms found on this card. INTERFACES
goes to the interface digraph for the GN&C System,
and LISTING links to the digraph text listing.

Note from this figure that BIA16 fails ARJ2. On this
drawing, ARJ2 fails nothing else. To see if ARJ2
fails anything in any other systems, the user will
click on INTERFACES.

Figure 15 shows the result. In this case, all the
GN&C interfaces fit on one card.

,[TaPVit.F - IIAcRONYMSIION CFRUtT,NTERERCES

[ COMMUNICATIONS & TRACKING SYSTEM

PROPULSION SYSTEM

Figure 15
GN&C INTERFACES DIRECTED GRAPH

The interface digraphs such as this allow the user to
gain a visual understanding of failure propagation
paths between systems. A system button (GN&C
here) allows the user to jump back to the source
system digraph, if needed. To go to one of the

interfacing systems, the user just clicks on the desired
component belonging to that system.

ARJ2 can be found on the GN&C to EPS interface

digraph. Here it is seen that that ARJ2 fails A J2. It
is also found in the GN&C to Thermal Control

System (TCS) digraph. In this case, the user first
tries the EPS digraph, and clicks on the A J2
component to go there.

Figure 16 shows the EPS digraph. It can be seen
that AJ1--one of the doubletons--is on this card as

well as AJ2. By inspection, it can be seen that AJ1

 I,NTER.ACESII.,sT,N011.C.DN.MsllEPSD,GA.P.I

MBSUI

Figure 16
EPS DIRECTED GRAPH

and A J2 failing will cause failure of Main Bus
Switching Units (MBSU's) 1 through 4. Loss of all
these will cause loss of power flow to all the Power
Distribution and Control Assemblies (PDCA's). By
clicking on EPS TO GN&C from the topview card,
the card shown in Figure 17 reveals that several
BIA's are failed by losses of various PDCA's.

Going back to the GN&C digraph, Figure 14, it is
seen that the target, ST1, is failed by loss of BIA4.
Then, by going back to Figure 17, it is seen that
BIA4 is indeed powered by PDCA1. Thus, the path
from AJ1, BIA16 to ST1 has been found.

A check of the TCS and TCS interfaces digraphs does
not find any such direct paths (Figures 18 and 19).

In a more developed tool, it would be useful to
provide for automated tracing of these failure
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Figure 17
EPS TO GN&C INTERFACES

DIRECTED GRAPH

[ TOPUIFW[[INTERFRCFsilUST'NG[[ACRONYMS[I

LAB HADIO

TCS OIGRAPX

Figure 18
TCS DIRECTED GRAPH

i r0PUIEW]l TCS IIRCAON'MS[[ TCSFAULTI_rFHrHCES
LISTINGS-- E C &Tt TCST n. [[" GUIOANC. _( "l( .......
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Figure 19
TCS INTERFACES DIRECTED GRAPH
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propagation paths, known commonly as "cutsets."

A typical function digraph is shown in Figure 20.
The function digraphs contain small "pushbuttons"
which allow the user to go to the associated system
card containing that object. The function digraphs
are drawn in a fault tree structure. The linkage to
digraphs shows one way that hardware failure
modeling can be used in conjunction with functional
modeling.

ITOPUIEWli.STINO]1,CnON  S[I REBOOSTDIGRAPH
SMALL BIJTTOmS LINK TO SYSTEMS

i

R_T AILL DUI_'_y N_S IItOVH

Figure 20
REBOOST FUNCTION DIRECTED GRAPH

Figure 21 shows one of the digraph listings cards.
These cards contain the actual text listings of the
Space Station Freedom fault model directed graph.
The button highlighting seen in the demonstrations is
driven by the failure propagation modeled in the
total set of such listings. The syntax for these listings
is of the form "A,B,C", meaning that A can reach B
with C. If C is a "1", then the node A is a singleton

REBOOST

DMXRCS,REBOOST,I
GROUND,DREBIG,CREW

DREBIG,REBOOST,GNC
CREW

CR,DREBI,AM
DREBI,DCREW,FS

DCREW,CREW,I
CMPACI,DREB2,CMPAC2

FMPAC1,DREB3,FMPAC2
DREE2,DREB4,DREB3
DREB4,CREW,HMPAC

GNC AND C&T
TGPS.DREBS.1

GRP.DREB5,1
STI,DREB6.ST2
DREB6,DREB7.ST3
ISA1.DREBS,ISA2

DREB9,DREB10,1SA3
OREBS.OREBll.OREB7
OREBll,OREBI2,DREB10
DREB12,GNC,1
GNCSDPI,DRES13.GNCSDP2

OREB13,ORE814,GNCSDP3
OREB14,GNC,1

Figure 21
DIRECTED GRAPH LISTING EXAMPLE

REBOOST DIGRAPH [ILLUSTRATION
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to node B. The field can be scrolled up and down,
using the scroll bar on the right, to view various
portions of the listing. The ILLUSTRATION button
will display an illustration of the digraph associated
with this card, and the TOPVIEW button will return

the user to the digraph topview card.

5.0 HYPERCARD DEMONSTRATION
WORKINGS

This project had three separate phases: creating the
HyperCard block diagrams and special button scripts
to allow the demonstration to run, running the

digraphs using Digraph Matrix Analysis (DMA)
codes, and formatting the DMA results so they could
be used by the HyperCard graphics demonstration.
Reference 1 details the development of the
demonstration. Reference 2 provides more
information on DMA.

There are actually three HyperCard stacks used in the
demonstration: one for the Introduction, one for

Running the Demonstration, and one for Viewing the
Model. This conserves the active memory in use by
the Macintosh at any one time. The total memory
occupied by all three stacks is about 670 kilobytes.

There are 98 cards in total: six for navigating, four
for tutorials, 12 for system block diagrams, one for
the functions demonstration, three for utility
purposes, 14 for system digraphs, 11 for interface
digraphs, seven for function digraphs, and 40 for
digraph text listings.

The demonstration runs by accessing data stored in
separate files on the Macintosh. The 1056 singleton
and doubleton files are stored in a folder called

"STATION_DATA." This folder occupies about 2.2
MB. In the demonstration, each time the user clicks

on a target object, two of these files are copied into
the HyperCard stack for use in highlighting the
correct objects to show single and double-point
failures.

6.0 FAILURE MODELING IN THE SPACE
STATION FREEDOM PROGRAM

The distributed nature of the Space Station Freedom
Program makes the system integration problem
different from that on any previous NASA program.
There is no longer a simple division of work by
large hardware elements. Rather, work is divided

into both hardware elements and distributed

functional systems. The interfaces between the
functional systems are more varied and complex than
those between distinct elements.

In view of this, there is a need for new approaches to
satisfying the program failure tolerance requirements
and capturing the knowledge of how redundancy
management evolves in various systems--both during
design and operations. Failure modeling is one way
to accomplish these goals.

7.0 CONCLUSIONS

The HyperCard tool has proven valuable as a means
for prototyping various graphics concepts and for
interfacing displays to fault modeling tools. The
demonstration shows the basic methodology which
would be performed in doing more detailed and
accurate fault modeling. It contains a tutorial
section, a block diagram section from which failure
tolerance can be interactively displayed, and an
illustration section by which the large directed graph
fault model can be viewed. The Space Station
Freedom systems, as modeled here, are indeed highly

interdependent.
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ABSTRACT

Robotic manipulators are difficult to program even without the

special requirements of a zero-gravity environment. While
attention should be paid to investigating the usefulness of
industrial application programming methods to space

manipulators, new methods with potential application to both
environments need to be invented. These methods should

allow various levels of autonomy and human-in-the-loop
interaction and simple, rapid switching among them. For all
methods simulation must be integrated to provide reliability

and safety. Graphical programming of manipulutors is a
candidate for an effective robot programming method despite
current limitations in input devices and displays. A research

project in task-level robot programming has built an
innovative interface to a state-of-the-art commercial simulation

and robot programming platform. The prototype demonstrates
simple augmented methods for graphical programming and
simulation which may be of particular interest to those

concerned with Space Station applications; its development
has also raised important issues for the development of more
sophisticated robot programming tools. This paper discusses

both aspects of the project.

1. INTRODUCTION

1.1 Inherent Difficulty of Robot Programming

Programming robotic manipulators for safe and reliable
execution in the face of inevitably uncertain conditions is
difficult for a number of reasons [7]. Many robots today still

provide only rudimentary control instructions that are roughly
equivalent to machine language for computers. The only
space-based robotic arm, the Remote Manipulator System
(RMS), can only be programmed, as opposed to teleoperated,

by setting the joint values. Obviously, the impossibility of
envisioning the movement of the arm by mentally solving the
forward kinematic problem makes this method unsatisfactory.

More advanced industrial manipulators provide sophisticated

control languages like VAL II or Karel with point-level
instructions and modem branching constructs for structured

programming. Most often, these languages are not used
because it is difficult for programmers to reliably envision
spatial operations and exceptions even at the point level. A
"bug" introduced off-line can have much more disastrous
effects in a robot program than, for example, in a word

processor.

Consequently, most robots are programmed with a teach
pendant. This is an easy method and appropriate for simple,

repetitive tasks. Its disadvantages are many: on the factory
floor it requires down-time; complicated tasks like assembly
are almost impossible to program; there is little if any

branching capability, especially on complex feedback from
machine vision systems or force/torque sensors. With regard
to its use in space-based robotics, this last disadvantage is
decisive. In addition, the experience of the RMS shows that

space-based manipulators are more likely needed for
complicated, "one-of-a-kind" tasks than for simple, repetitive

operations, and on the Space Station Freedom, NASA plans
to use the Flight Telerobotic Servicer (FTS) for assembly.

1.2 Task-level Robot Programming

1.2.1 Requirements for Task-level Robot
Programming

The difficulties and limitations of current methods of

programming robotic manipulators both on Earth and in space
have motivated considerable research in developing new
methods. One line of research beginning in 1976 [13] and

continuing with impressive momentum during recent years
has the goal of developing systems that allow manipulators to
be programmed at the "task" level. An example of a space-
oriented task command is PLACE ORU-I IN PAYLOAD-

BIN-2. A task-level robot programming system would
translate this command into a sequence of motions and
sensing operations that would reliably and safely accomplish
the task. A necessary component of such a system is a model
of the workspace and manipulator, including geometry with

tolerances, kinematics, and dynamic attributes like mass and
required forces and torques for assembly. The key challenge
to building such a system is that any model is inaccurate to
some extent, and therefore manipulator motion occurs in the

context of uncertainty [8].

1.2.2 Programming Methods Must Allow Various
Levels of Autonomy

One advantage of a task-level programming system for space-
based robotics is that it provides the building blocks for
various levels of autonomy. This is essential for the astronaut

who uses the system to control a manipulator to gain
confidence in its reliability and safety. At a lower level of
autonomy the sequence of point-level motions and sensing

operations generated by the task-level system can be
examined, simulated, or executed one at a time under close

monitoring; at a higher level of autonomy a number of task-
level commands could be combined into a more complicated

script. Using advanced ideas of augmented control [2],

teleoperation could take over at any time.
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1.3 The Need for Simulation

As mentioned above, it is absolutely imperative that a robot
programming system provides simulation capabilities. The

use of simulation is as vital to programming manipulators as
the use of a symbolic debugger is vital to programming large
data manipulation applications for a conventional computer
system. Despite a long-time and often world-class emphasis

on simulation for training, NASA has not baselined
simulation capabilities for the FTS. Real-time, three-
dimensional (3D) simulation of manipulators in space is

necessary for astronauts to gain confidence in any form of
autonomous control.

1.4 Graphical Programming

All of the research at Stanford, MIT, and Carnegie Mellon in
task-level robot programming has assumed a keyboard-based
textual interface with the manipulator. Until recently this was
justified by the relatively low resolution and slow speed of
graphics workstations, and the resulting difficulty in
specifying robot motions and effects. The last few years have

demonstrated that high resolution, three-dimensional graphics
displayed in real-time can be a practical component of a
desktop-based robot programming system, while even more

revolutionary simulation capabilities like stereoscopic displays
and three-dimensional input devices are realizable in the near
future.

For space the need for non-keyboard devices to input
manipulator commands that can be simulated in real-time 3D

is even more critical. Keyboard input is simply too awkward
in zero gravity, and robot programming requires too much
knowledge of the workspace not to be facilitated by
contemporary interface components like menus and mice.

1.5 The Task-level Robot Programming Prototype

For the last year and a half the MITRE Corporation, with
initial funding from NASA, has been conducting research in
approaches to building a task-level robot programming system
fTLRPS). A prototype has been built that includes an
innovative interface to a state-of-the-an commercial simulation

and robot programming software platform (Deneb Robotics'
IGRIP) running on an advanced graphics workstation (Silicon
Graphics' IRIS 4D/70GT). The interface is used to control a
Microbot Alpha manipulator performing pick-and-place and

bin-filling operations in an appropriately simple plastic blocks
world. Feedback is provided by a 2D vision system capable
of recognizing circles, triangles, and squares.

The prototype demonstrates simple augmented methods for
graphical task specification and the use of simulation for
testing commands that may be of interest to those concerned

with Space Station Freedom robotic applications. In the
course of building the prototype, limitations in today's 3D
display and non-textual input devices became apparent,
suggesting new requirements for tomorrow's applications.

2. SIMULATION

2.1 Need for Simulation on board the Space Station
Freedom

Simulation of planned RMS teleoperation is conducted

rigorously prior to Shuttle missions using world-class high
fidelity simulation facilities. Experience has shown that many
uses of the RMS were not predicted and yet were critical to
mission success. On the Space Station Freedom, over much

longer duty cycles, this may be even more true for its
manipulators. If this is the case and control of space-based

manipulators advances from continual man-in-the-loop
teleoperation to some degree of autonomy, then simulation

capabilities on board will be a necessity.

2.2 Uses of Simulation

2.2.1 Complete Simulation before Execution

This type of simulation is used today for the off-line
programming of industrial manipulators and could be used for
ground-based programming of complicated planned

manipulator operations on the Space Station Freedom. The
programmer describes the manipulator actions desired, either
at a point-level or a task-level, and then views the complete
simulation that was specified. If there are problems like joint

limits exceeded or collisions detected, the program is altered
and simulated again. From this loop of program, simulate, re-
program, will develop a correct program that can with

confidence be downloaded and executed by the actual
manipulator. This use of simulation has been implemented in
MITRE's task-level robot programming system prototype,
building on top of IGRIP's simulation and robot-specific

translation capabilities.

2.2.2 Simulation Simultaneous with Execution

The task-level robot programming system prototype uses the
simulation capability of IGRIP simultaneously with execution
by the Microbot manipulator to implement collision detection,
reachability checks, and simple grasp planning. The
simulation is run ahead of the execution by the robot so that

any actions that result in undesirable effects are not physically
carried out. This type of operation would allow continual
supervision of the manipulator without teleoperation, and it is
believed that the strain on the astronaut in a space-based

implementation would be significantly reduced. It is important
that the world model and the graphical display be updated to
reflect changes in the workspace after manipulator actions.
Ideally, this would be in real-time; in MITRE's task-level

robot programming system prototype, updates can occur only
after the task or collection of tasks is completed, and the
Microbot returns to home position.

3. GRAPHICAL PROGRAMMING

3.1 Commercial programs

The ability to graphically program a robot is limited by the
current state-of-the-art in input devices and displays.
Although true 3D displays and pointing devices are in

development, they are not widely available. We are therefore
constrained to showing a projection of a 3D scene on a 2D
graphics screen. The latest generation of graphics
workstations lets us show perspective views of 3D scenes and
even translate and rotate them in real time, but they are still

only 2D projections.

Trying to point to an arbitrary location in 3 dimensions on a
2D screen poses problems. It is difficult to determine the
dimension corresponding to depth into the scene, or distance
from the user (see Figure 1). Several methods are used to

help remedy this problem. The S-GEOMETRY 3D graphics
software from Symbolics attempts to alleviate the problem by
allowing optional cursors for selecting points [12]. These
cursors have extra lines drawn to help the user determine the
current 3D location. One cursor, the arm cursor (see Figure

2), has lines drawn from the cursor point to the intersection of
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each of the x, y, and z planes. A second cursor, the box
cursor (see Figure 3), has lines drawn from the cursor point
to the intersection of the three planes (as in the arm cursor)
and lines drawn to the coordinate axes. Cursor motion in
combination with mouse buttons determine the 3D motion of

the point. Even with these methods, accurately specifying a
3D location requires concentration and can be difficult if the
screen is cluttered with objects.

Figure 1 - Crosshair Cursor

Figure 2 - Arm Cursor

Figure 3 - Box Cursor

Commercially available robot programming and simulation

packages typically allow the user to program the robot by
specifying a desired position and orientation for the
manipulator's toolpoint. The toolpoint is most often the tip of

the robot gripper and its position and orientation in space is
called a "pose". A pose can be specified by giving the x, y,
and z coordinates and the yaw, pitch, and roll angles or by
selecting predefined locations in the robot's workspace.

These predefined, named location are called tagpoints or
reference frames by the various robot programming packages
[3, 4, 9]. To avoid the 3D pointing problems mentioned

above, the tagpoints are defined in advance by specifying
coordinates or by aligning a new coordinate system with

components of objects in the workspace. Thus a tagpoint can
be coincident with the local origin of an object or aligned with

a vertex, for example. The robot programming package can

perform the inverse kinematics to translate a pose into a set of
joint angles, or a configuration, for the specific robot. Motion
between configurations can be constrained to be a straight line
in cartesian space or can be joint-interpolated, meaning the

joint angles will change linearly between configurations but
the resulting path of the toolpoint will be curved.

Robot programming and simulation packages generally

provide a Pascal-like language in which robot programs can
be written and simulated. Figure 4 is an example of a

program written in GSL, the programming language in IGRIP
from Deneb Robotics. These languages are robot-independent

and are therefore ideal for prototyping and simulation, where
different manipulators may be tested. If a translator is

available, the programs in these language can be translated
into the language understood by the robot controller hardware
or software. For example, the program in Figure 4 can be
converted to a form that a Microbot Alpha I robot can use, as

in Figure 5. It is obvious that programs written in the high-
level languages are much easier to write, test, and debug than

are robot-specific programs.

program moveit

........................................

VAR

round_cap_l_l, pos_l : POSITION

........................................

begin

UNITS = ENGLISH

Smotype = JOINT

move link 6 by 50 relative nosimul

move near round_cap_l_l by 3

move to round_cap_l_l

move link 6 by -30 relative nosimul

grab round_cap_l_l at link 6

move away 3

move near pos_l by 3

move to pos_l

release round_cap_l_l

move link 6 by 30 relative nosimul

move away 3

move home

move link 1 by 60 relative nosimul

end moveit

Figure 4. GSL Program
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IGRIP also has a menu-driven graphical robot programming

capability, which provides an interactive method of producing
GSL programs [4]. Menus provide the ability to set up
parameters and choose manipulator motion commands. When
a motion "move to tagpoint" type command is chosen, the

user has the option of pointing to tagpoints on the screen or
choosing the named point from a list, as well as keying in the
name. Motion commands are carried out by the simulated
robot as they are specified. An entire robot program can be
generated in this manner and then tested, translated, and

downloaded to the actual manipulator for execution.
However, because this programming is at the point level, the
use of menus can become tedious compared to simply writing

the program directly in GSL.

@STEP
@STEP
@STEP
@STEP

@STEP
@STEP

@STEP
@STEP
@STEP
@STEP

@STEP

199,0,0,0,0,0,i136

199,-1345,815,503,1025,623,503
199,0,390,176,0,0,176
199,0,0,0,0,0,-681
199,0,-390,-176,0,0,-176

199,-690,693,-408,-431,431,-408
199,0,415,50,0,0,50
199,0,0,0,0,0,681

199,0,-415,-50,0,0,-50
199,690,-1515,-98,-595,-1057,-1234

199r1351r0r0_0r0r0

Figure 5. Microbot Alpha Program

3.2 TLRPS prototype and extensions

3.2.1 Specifying parts

An important step up from manually creating a robot program
by specifying individual points on the manipulator's path is

the ability to specify the objects to be manipulatexl and their
goal positions, with an appropriate path automatically
generated. This is the capability that the TLRPS adds to the
commercial programming package. For a simple pick and
place task, the object to be moved and its goal location must

be specified. In the TLRPS prototype an object to be
manipulated is chosen from a menu of all known objects in
the wotkspace. The object is then highlighted on the graphics
screen to allow the user to confirm the choice. A goal location

can then be chosen from a menu of predefined locations and
the tagpoint is highlighted for confirmation. Optionally, the
user can specify an x-y location, in inches from the origin, for
the goal, with z and rotations defaulted to reasonable values

for a pick-and-place operation. A tagpoint for the specified
goal is created and highlighted for confirmation.

Once an object and a goal have been chosen a sequence of

motions is automatically generated to move the object from its
original location to the goal. Checks are made along the way
to ensure that all locations are reachable by the robot and

neither the robot nor the object being moved will collide with
other objects in the workspace. The user needs only to
specify the object and the goal; the TLRPS generates the
intermediate steps needed to safely move the object.

With manual robot programming or the menu-driven
programming provided by IGRIP, a complete robot program
must be written, tested, translated, and downloaded before the

actual manipulator can be used. The TLRPS prototype allow
more interactive control of the manipulator. The user may
choose to test the task to be complete by simulation only.

However, the TLRPS provides the ability to simultaneously

simulate the task and execute it with the actual robot. This

was discussed in greater detail in Section 2.

3.2.2 Dragging objects

Although specifying operations by naming objects or

choosing them from a menu is certainly an advance from
point-by-point programming, a more intuitive interface would
be to allow the user to point to an object to be moved.
Pointing to an object in 3D is not a problem. An object can be

chosen by placing the cursor over any portion of the object
facing the user. The function providing selection of objects
with a mouse under program control is not available in the

simulation and robot programming package currently being
used for the TLRPS prototype, so this capability has not been
implemented. Another desirable option, which is not

implemented in the current prototype, is to allow the user to
drag an object on the screen from its original location to a new
location and have the TLRPS generate the equivalent

manipulator motions to move the object without collisions.
With this option there still is the problem of visualizing the 3D
motion on a 2D screen.

3.3 Input Devices for 3D Manipulation and New
Display Technology

Even with a more functional and open software platform to
use in building a graphical interface to the control of a
manipulator, the inherently two dimensional input and display
technology of today's workstations would be severely
limiting. There are, however, laboratory efforts and even a
few advanced commercial products that demonstrate this will

not be tree in the near future. With respect to space-based
robotics and Space Station Freedom in particular, it is of
utmost importance that plans should be made now to provide

hooks and scars so that these rapidly developing technologies
can eventually be used.

Complex interaction in zero gravity with the computer control
of dynamic physical devices such as a manipulator requires a
large bandwidth of information that would be difficult if not
impossible to communicate using a keyboard. Current NASA
thinking foresees voice recognition technology as an

alternative. The use of this technology will be an important
advance, but for robotic control it will have to be implemented
together with to the interactive display concepts (menus and

highlighting) described above, or else too much workspace
knowledge (names, dimensions, dynamic attributes) will be
required of the astronaut operator.

The most natural control and programming of a
manipulator, though, can only be expressed with three-
dimensional input devices. If an object needs to be
grasped, the operator should only have to move his hand

appropriately and the effect should be displayed on the screen.
This is, in fact, possible today. There are two commercial
products, a glove-like device (DataGlove TM by VPL

Research) and an optical gesture sensing device (by Sensor
Frame Corporation) that could be used to build an interface to
a manipulator. Ames Research Center is already using the first
device in conjunction with demonstrations of their head-

mounted display technology. An altemate device for
manipulator programming that is within the realm of today's

technology, although not commercially available, is a small
manipulator replica that could provide true three-dimensional
input for graphical display.

Equally important, especially to NASA, is the development of
true three-dimensional displays. This is necessary for remote
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teleoperation as well as supervised autonomy. It has been

demonstrated that the remote control of robots in response to
ordinary video feedback is extremely difficult. True 3D

displays may be built using stereoscopic or holographic
technology; there are many laboratory efforts currently in
progress with the objective of developing these displays.

4. ISSUES

4.1 Uncertainty

Most robot programming and control systems assume a
perfect world: error-free sensors, perfect object models, and

robots that can be positioned precisely where desired. The
real world, unfortunately, falls far short of perfection. The
robot and environment can be engineered to minimize these
errors and uncertainties, but they will never be perfect. Robot

programs need to handle differences between models and
actual objects and handle errors in sensor data and

manipulator control. Practical methods for dealing with these
uncertainties need to be developed. Brooks [1], Erdmann [6],
Durrant-Whyte [5], and Volz, Xiao, and Desai [14], among
others, have published work upon which a practical system

might be based.

4.2 Path planning

The current version of the TLRPS prototype does not have
any tree path planning capabilities. To move an object from
one position to another the system follows a fixed set of steps

with a few parameters for initial object location and goal. The
manipulator first opens the gripper and moves to a pose
directly above the object to be moved, then moves straight

down over the object and closes the gripper to grasp the
object. Next the manipulator moves straight up, then to a
pose directly above the object's goal location, then straight
down. Then the robot opens the gripper and moves straight

up again. This sequence of motions is sufficient to handle
any simple pick-and-place operation in two dimensions,
where the objects are all roughly the same height and can be

grasped from the top.

Some minor modifications of this same plan would enable the

system to handle a more extensive collection of objects and
limited three dimensional placement. To cover a larger set of
tasks, however, these heuristics should be replaced by

algorithmic path planning. This would add the capability,
given the initial and goal poses, to compute a path for the
manipulator through the free space or unoccupied volume of
the workspace avoiding collisions. Some of the commercial

robot programming package vendors are developing this kind
of path planning capability.

4.3 Human-in-the-loop

Any method of robot programming must allow various levels
of autonomy and human-in-the-loop interaction and simple,

rapid switching among them. While it is desirable to automate
as much as possible to free the astronaut from tedious and
time-consuming chores, we still need to allow the human to
immediately and safely assume control if it becomes
necessary. Once a crisis situation has ended, the system
should be able to resume autonomous operations with as little

input from the human as possible and preferable without
having to re-plan an entire task from scratch. Sheridan [10],
Stark, Kim, and Tendick [11], and Conway, Volz, and

Walker [2], among others, have all made some suggestions
and progress along these lines, but there is still much work to
be done.

5. CONCLUSIONS AND FUTURE WORK

Graphical programming of manipulators is an effective
approach despite current limitations in input devices and

displays. The prototype TLRPS described in this paper
includes an interface that takes advantage of these graphical

techniques. In the future we would like to investigate both the
use of voice recognition technology with the interactive
display methods described in this paper and true three-
dimensional input devices that promise a more natural way of

programming manipulators. We feel this is an especially
important technology area for NASA to develop and exploit.
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One of the most intriguing and complex areas
of current computer graphics research is

animating human figures to behave in a
realistic manner. Believable, accurate human

models are desirable for many everyday uses

including industrial and architectural design,
medical applications, and human factors

evaluations. For zero-gravity (0-g) spacecraft

design and mission planning scenarios, they
are particularly valuable since 0-g conditions
are difficult to simulate in a one-gravity Earth

environment.

At NASA/JSC, an in-house human modeling

package called PLAID is currently being used
to produce animations for human factors

evaluations of Space Station Freedom design
issues. This paper will present an

introductory background discussion of

problems encountered in existing techniques
for animating human models and how an
instrumented manikin can help improve the
realism of these models.

BACKGROUND

The difficulty in creating realistic models of

people lies in the complexity of the human

body. There are over 200 degrees of freedom
in the body structure [6]. For purposes of
human modeling for task planning and motion

studies, the body can be graphically

represented as a series of rigid body joints
and linkages. For many movements the
human model can be adequately represented

by a subset of 30-40 degrees of freedom if it
is not necessary to model each finger, toe,

spinal disc, etc. for a study [4]. Even with
such simplification of body structure,
however, the approach to animating human

movement in a realistic manner remains a

complex issue. With 30-40 degrees of
freedom in a model, redundant solutions for a

desired motion are possible, some of which
may be more comfortable and intuitive for a

human to perform than others are. (Fig. 1.)

FIGURE l

Redundantsolutions for left hand reach
with fixed feet locations.

There are basically three methods of

modeling human motion for animated

graphics display output: a guiding (keyframe)
system, a program level or algorithm-based

system, and a task level system [7]. Each
method has its strengths and weaknesses.

Method 1: Guiding System

The guiding system is the traditional tool of

computer animators dealing with human
motion. Under this system, a user sets up a

series of "keyframes" explicitly describing

key actions of interest. For example, in Fig.
2a, a crewmember is modeled in an initial

position configuration at time to. At time tx,

he/she has assumed a new position

configuration of interest (Fig. 2b). The
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program is then instructed to calculate a
number of frames (n) showing the in-between

frames from to to tx, usually at a rate of 30

frames per second for video output. The

program can use a simple linear interpolation

to compute the new position of link L at each
frame between to and tx, based on the

distance of travel of link L during that time

interval. Linear interpolation tends to make
the motion of the figure appear jerky and
unnatural, however. The motion can be given

a smoother appearance by using a spline
intepolation instead of a linear assumption.

(a) Co)

FIGURE 2

Crewmember at initial time to and later time ix.

Having the computer calculate in-between
frames and check joint limits for solution

feasibility can help the user relieve some of
the tedium involved in animating human

figures. This approach can be satisfactory

when simple motion is all that is required.
Where subtle changes of motion are desired,

however, guiding systems require a lot of

manual set-up time since they require more

keyframes to define fully the action of
interest. Much iteration is usually required to

"tweak" the motion for it to look correct to a

viewer. The motion generated is therefore

highly dependent on the powers of
observation of the animator.

The guiding method is particularly time-
consuming to set up for three-dimensional
animated studies since perspective views of

the models and their work environments can

be misleading. For graphically directing

motion from one specific point to another,

some guiding system users turn perspective
off and look at 2-dimensional views for better

precision in positioning body segments. This
approach requires a view change to locate the
third dimensional coordinate, and a

decomposition of the movement into two or

three orthogonal rotations, depending on the

joint being manipulated. The view change

and mental decomposition require additional
set-up time.

Method 2: Algorithm-based System

In an algorithm-based system, physical laws

are applied to human parameters. Typically,
these systems assume rigid body mechanical

links with joints modeled as spring and
damper systems. The most commonly used
algorithms are direct/inverse kinematics and

direct/inverse dynamics algorithms borrowed

from robotics applications.

The direct kinematics approach can be

described as: given a set of joint angle
information, determine the position and
orientation of an end effector such as a hand

or foot. Once position and orientation are

determined, they can be differentiated to

obtain joint velocities and accelerations. A
simple example of a direct kinematics

algorithm is the Denavit-Hartenberg matrix

method [2]. The inverse kinematics problem
is to determine appropriate joint angles given

position and orientation of a desired end
effector, and an example of such an algorithm

is one described by Hollerback and Sahar [3].

The inverse kinematics approach is useful in
reach evaluations for human factors studies.

Given information on lengths of body
segments, such algorithms can determine if

Crewmember A at location (x,y,z) can reach

button B without requiring the system user to
predetermine (or guess) the desired joint

angles. Since human beings have joint limits

that restrict some motions, a good human
modeling program will check joint limits for

each frame of animation. Joint limit checking
improves the animation result by eliminating

solutions that are not humanly feasible to

perform. The problem with joint limit
checking is that it tells you nothing about the
"naturalness" of the motions.

For dynamics analyses, the direct dynamics
problem is described as determining the

trajectories of the end effector(s) given

appropriate initial conditions of force and
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torque parameters. The inverse dynamics
solution is to determine the initial forces and

torques on joints required to produce known
resultant forces and torques at time tx. For

human modeling, the direct/indirect
dynamics algorithms borrow heavily from

robotics applications. The most commonly

used dynamics algorithms generally fall into
one of two categories [4]: Lagrange's

equations of motion based on kinetic and

potential energies for nonconservative

systems, and Newton-Euler formulations
based on Newton's second law for

determining the total force vector and Euler's
equation for determining the total torque
vector.

A major drawback to modeling human motion
with algorithms is that human motion is not

purely kinematics or purely dynamics: it is a
combination of both [1]. Dynamics

simulations should produce accurate motion

animations if the dynamic model is
sufficiently detailed. Often, however,

technically feasible but unnatural looking

solutions are a result of dynamic modeling
since it is difficult to come up with enough

equations of motion, constraints, etc. to
eliminate redundant solutions.

An additional problem with dynamics
modeling of humans is that spring and

damper functions, not constants, are required

to describe humans accurately with
spring/damper analogies. Determining these

functions requires collection, storage and

reduction of empirical data and such data is
generally not available. Data supplied from

cadaver studies can be of questionable value

when applied to simulations of living people.
Existing data from live subjects is usually
limited to studies of specific motions or tasks

and may not be universally applicable to all
motion situations.

For realistic-looking animations based on
algorithms, information may also be needed

on motion comfort levels and preferred
motion. For example, to retrieve an object

dropped on the floor, does someone simply

bend straight-legged from the hips or does
he/she bend the knees and stoop part way?

The result is that even with a reasonably

detailed algorithmic model, the system user is
still required to tweak the model to make its

motion appear more natural to a viewer.

Method 3: Task Level System

This method uses Artificial Intelligence (AI)

techniques to describe the performance of a
task at multiple levels. For animation

purposes, this requires applying a set of facts

to rules about task actions. For a given task,

high level AI commands, rules and
descriptions of actions are used to describe
the behavior of the human model in terms of

events and relationships. The high level AI

system transforms the behavior model into
low-level instructions such as algorithm

references or key values for parametric

keyframe creation; these low-level
instructions are then used to create an

animation of the task performance [4,7].

Successful task performance interpretation

requires knowledge of the task environment
and objects within it. This knowledge usually

involves an object oriented database that not

only contains information about an object's

geometry and mass attributes (e.g., density,
specularity, thermal properties) but also how

it is put together, how it behaves and whether

it inherits properties from related objects. An
example high level task command might be,
"Put the book on the table." A task

performance system must contain rules
defining how the verb "put" is translated into
a human motion, object information such as

book dimensions and table height,

information regarding which person is to put
the book on the table, and the current state of

the animation environment (Must someone

first pick up the book or is he/she already

holding it? Is the person close enough to use
a simple arm reach to place the book on the
table or must he/she walk across a room to

complete the task?). A more sophisticated

system could also check an anthropometric
database for information about the individual

performing the task to determine arm length
and strength factors that might affect the task
outcome.

Sophisticated task performance systems will
take many years to develop. Rules for task

performance must be created and iterated to

perfect; knowledge-based object descriptions

must be input to a database so the system can
access the information needed for task

simulation. The lengthy development time

for perfecting task performance behavior

rules and the problems of organizing the large
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database required for such a system are its
chief drawbacks.

DISCUSSION OF MANIKIN DEVELOPMENT

Each of the three animation methods

mentioned has strengths and weaknesses. At

present, the authors see the PLAID human
modeling effort eventually evolving into a

program with heavy emphasis on task
performance and algorithm-based methods

with a guiding system user option. However,

such a sophisticated modeling program will
take years to develop. In the meantime,
PLAID animators use a combination of guiding

and kinematic algorithm methods to evaluate
human factors issues for the Space Station

Freedom Program.

Reach algorithms and joint limit checking are

an integral part of PLAID's anthropometrics
features but still require a large amount of

user set-up time for some motion studies.
The reach algorithm works quite efficiently

when used to evaluate simple reaches to a

predefined vertex on a person or object. A
significant area of difficulty arose during

some complex reach studies for the NASA
Man-Systems Integration Standards (MSIS)
document [5], however.

The MSIS is a 4-volume set of man-systems

integration design considerations and
requirements for development of manned

spacecraft. Volume IV is specifically
dedicated to Space Station Freedom human

factors design issues. PLAID anthropometric
features were used in the MSIS to help
determine maximum reach envelopes of 5th

percentile female and 95th percentile mate

astronaut candidates. For simple reaches, the
existing PLAID features were straightforward

to set up and manipulate. (Fig. 3). User set-

up of imaginary 0-g maximum side-reach
envelopes in free space with a foot restraint

presented significant complications, however.

In Figure 4, the human model is initially

positioned in a 0-g configuration with arms
reaching above the head as far as possible
and feet restrained in a foot restraint. The

model is then positioned to sweep out an

envelope in his/her lateral plane and identify

points on that envelope. This motion is quite
complex and eventually involves waist and/or

FIGURE 3

Simple forward/backward reach envelope
with foot restraint for MSIS document.

hip twist, knee flexion, ankle flexion, etc.

Since points on the envelope are in free space
and are unknown to the system user, the
reach algorithm (which requires a known

destination vertex on a person or object)
cannot be used. The user must therefore

manipulate the various degrees of freedom on

a joint by joint basis. Altering one joint
affects the links downstream from it so the

process is tediously iterative. Since the figure
was being viewed on a computer screen, an

inherently 2-dimensional display device, the
user was required to make frequent view

changes to ensure he/she understood exactly
how the human model was currently

positioned. For additional studies of complex
motion a more user-friendly set-up procedure
is obviously needed.

FIGURE 4

Complex side-reach envelope with foot
restraint for the MSIS document.
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A faster, more intuitive input device for
positioning complex human movements in

free space is an instrumented manikin. Such
a device is currently being developed by the

Graphics Analysis Facility at JSC for use with

PLAID human modeling features. The
manikin is a modified crash dummy with

wirewound linear potentiometers instead of
accelerometers for its instrumentation. It is

approximately 48 inches tall and has 38
measurable degrees of freedom. To model

actual human movement capabilities more

closely, the standard crash dummy

mechanical structure was modified to provide
shoulder and thigh twist and was given a
flexible neck.

The manikin is a truly 3-dimensional input

device that can provide the computer with
multiple position and orientation inputs

simultaneously. It can be manipulated by a
user in hands-on fashion to a desired

configuration, where friction in the joints
retains their positions once the user lets go.

Alternatively, set screws can be used to lock

the joints if preferred; for example, the user
may want the legs configured in a 0-g

orientation for an entire study. Mechanical

joint limit stops equivalent to or slightly
exceeding normal human limits are built into
the structure.

The manikin is initially placed in a 1-g

standing position and calibrated. When the
user has manipulated the manikin to a new

configuration, relative displacement voltages
undergo an AC/DC conversion and signals are

sent through an RS232 interface to the
computer program. The input is converted to

degrees for segment displacement
information and then joint limits are checked

by software to ensure position validity. Since

PLAID body segment lengths are normalized,

they can be read if desired from a user

specified database of astronaut applicant data
compiled by the Johnson Space Center's

Anthropometrics and Biomechanics
Laboratory. Thus, the manikin can be used to

manipulate positions of different sized human

models without mechanical or electrical

reconfiguration.

CONCLUSION

By using the instrumented manikin, a user

has a combination of algorithm and guiding

methods available for setting up the desired

study parameters. The user can utilize the

power of algorithms as much as possible to

simplify set-up procedures, yet have an
effective way to tweak the human model for

creating complex, subtle motion keyframes.

As a long-term animation system goal, an AI-

based task performance system with heavy
reliance on efficient algorithms is anticipated.

While this system is being developed,
however, human modeling analysts still need
an effective tool to blend the individual

strengths of guiding and algorithm methods.
Even when the long-term system is in place,

users will probably continue to demand an

efficient way to modify the motion analysis

output if desired. The instrumented manikin
can be an effective tool for providing this

option.
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ABSTRACT

Canada will develop a Mobile Servicing System

(MSS) as its contribution to the

U.S./International Space Station Freedom.

Components of the MSS will include a remote

manipulator (SSRMS), a Special Purpose

Dexterous Manipulator (SPDM), and a mobile

base (MRS).

In order to support requirements analysis and the

evaluation of operational concepts related to the

use of the MSS a graphics based kinematic

simulation/human-computer interface facility has
been created.

The facility consists of the following elements:

(a) A two-dimensional graphics editor

allowing the rapid development of
virtual control stations.

(b) Kinematic simulations of the space

station remote manipulators (SSRMS

and SPDM), and mobile base.

(c) A three-dimensional graphics model

of the space station, MSS, orbiter,

and payloads.

These software elements combined with state of

the art computer graphics hardware provide the

capability to prototype MSS workstations,

evaluate MSS operational capabilities, and

investigate the human-computer interface in an

interactive simulation environment.

This paper describes the graphics technology

involved in the development and use of this

facility.

1.0 INTRODUCTION

The Mobile Servicing System (MSS) will be
Canada's contribution to the U.S./lnternational

space station. The MSS will play an important

role in performing the following functions on the

space station:

0 Space station construction and

assembly

D Transportation (External on the space

station)

D Payload Handling (Deployment,

retrieval, and berthing including the

orbiter)

Attached payload servicing (in the

extravehicular environment)

[_ Space station maintenance (in the

extravehicular environment)

Ill Crew extravehicular activity (EVA)

support

[:] Space station safe haven support
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1.1 MSS System Configuration

The space segment of the MSS comprises three

elements; the MSC (Mobile Servicing Centre),

the SPDM (Special Purpose Dextrous

Manipulator), and the MMD (MSS Maintenance

Depot).

The MSC comprises two sub-elements called the

MRS (Mobile Remote Servicer) and the MT

(Mobile Transporter). The MT is to be supplied

by the United States and provides the MSC with

translation, corner turning, and plane change

capability. The MRS comprises a number of

major systems. The MBS (MRS Base System)

provides the structure which interfaces with the

Mobile Transporter and accomodates payloads

and the remaining systems of the MSC. The

relocatable SSRMS (Space Station Remote

Manipulator System) is provided as a system of

the MSC.

Figure 1 illustrates some of the MSS equipment

described above.

The intent of this paper is to describe the

applications of graphics technology to the MSS

systems design process and to the creation of the

MSS Kinematic Simulation Facility.

The role of the facility within the overall systems

design and space operations process will be

described. Following this, technical details

regarding the current uses, and hardware and

software configuration of the facility will be

discussed.

2.0 ROLE OF THE GRAPHICS

WORKSTATION IN MSS SYSTEMS

DESIGN AND OPERATIONS

The development of the MSS Kinematic

Simulation Facility was driven by the need to

rapidly prototype and evaluate candidate

configurations and capabilities of manipulators

and control stations in a cost-effective manner.

This facility forms an integral part of the systems

design process providing input at all stages of the

design. The following will describe the uses of

the graphics workstation in relation to this

process.

2.1 Derivation of Requirements

The ability to visualize abstract concepts allows a

systems designer to gain insight into the system

being designed. The knowledge gained thus

allows the designer to define, refine, and verify

system requirements in a more efficient manner.

The preliminary definition process consists of

performing task analyses based on operational

concepts and proposing designs or prototypes as

implementation solutions to the requirements

specified in the formal program requirements

documentation.

Rapid prototyping capabilities allow the

formulation and creation of many competing

design concepts in a cost-effective manner.

All components of the MSS must operate within

the environment imposed by the physical and

logistical infrastructure of the space station. As a
result, influences external to the MSS have a

significant impact on the design process. A

graphics workstation based simulation facility

provides the capability to simulate these external

influences and assess their impact on design
solutions.

2.2 Pilot Evaluation

A prototype control station may be evaluated

using such criteria as accuracy of control, user

preference, response time, the ability to learn

and re-learn to use the workstation, and the

ability to transfer training between operators. 1

Pilot evaluation consists of allowing qualified

personnel such as astronauts and human factors

specialists to interact with the simulations and

evaluate the various prototoypes in a realistic

environment.

The results of the evaluations are quantified

through the use of questionaires designed to elicit

relevant comments and impressions from the
reviewers.

2.3 Iteration

The iteration process consists of refining the

design by integrating the best features of each

prototype identified by the pilot evaluators into a

new proposed design and re-submitting the

design for evaluation.
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2.4 Final Design

Eventually the prototypes will converge on a

preferred configuration. The final design of the

workstation may necessarily be a tradeoff

between such factors as the capabilities of the

available technology, requirements for interface

commonality with other systems, operator

preferences, and the impact of acceptable

operational procedures.

3.0 MSS KINEMATIC SIMULATION

FACILITY OVERVIEW

The intent of this section is to describe how the

functional components of the facility are

combined to provide an integrated simulation of

MSS systems and how this capability is utilized in

the development of the MSS.

3.1 Uses

The primary use for the MSS kinematic

simulation facility is threefold:

Operations Analysis

Operations analysis includes trajectory planning,

reach analysis, viewing analysis, and evaluating

the effectiveness/capability of the MSS to

perform in the space station environment.

The outputs of operational analyses may effect

the design of the MSS by providing critical

information regarding the length of booms, and

number, placement, and characteristics of joints.

Information may also be obtained which impacts

the space station design for operations using the

MSS. In addition, viewing analyses assist in the

preliminary definition of camera locations and

quantities.

O Human-Computer Interface

Development

Telerobotic applications rely on the ability of a

human operator to directly control or supervise

an operation. The definition, placement, size,

colour, and functionality of the controls

associated with the MSS will determine the ease

with which the MSS will be operated.

Evaluations of human-computer interface

concepts are being performed in parallel with the

systems design activities.

Q Animated video production

Animated videos have been found to be an

efficient method of conveying operational

concepts and MSS capabilities. In addition,

videos are excellent vehicles through which

public awareness of space activities can be

broadened.

3.2 Hardware Configuration

The MSS Kinematic Simulation Facility currently

consists of a Silicon Graphics IRIS 4D 70-GT
with 8 Mb of RAM, a 380 Mb hard drive,

mouse, keyboard, 19 inch monitor with

resolution of 1280 x 1024 pixels, 96 bitplanes,

and an Ethernet card for communication with

other hosts.

The operator's primary input devices are the

keyboard, mouse, and a 6 degree of freedom
handcontroller used for control of the

manipulator. Other input devices such as a

touch screen, trackball, discrete switches, and a

voice recognition system may be added and

evaluated serially or in parallel.

The hardware dedicated to the video recording

function consists of an optical disk recorder, sync

generator, IRIS genlock card, RGB Encoder,

VHS editing video recorder, and an NTSC
monitor.

Figure 2 depicts the current hardware

configuration of the facility along with typical

input/output device options.

3.3 Software Configuration

The facility operates in a Unix/C based
stand-alone IRIS environment. Communication

with other hosts for off-line processing is

available however the stand-alone performance
of the IRIS has been found to be sufficient for

the current operational analyses and levels of

simulation complexity. The iteration rate of the

simulation varies between 3-5 Hz. depending on

the number of simultaneous 3D windows being

displayed and the processing demands of the

kinematics.

Figure 3 depicts the current software

configuration of the facility.
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3.3.1 Simulation Environment

The MSS Kinematic Simulation Facility currently

consists of the following simulation components:

[_ Two-dimensional virtual display and

control panels

[_ Kinematic model of the space station

remote manipulators

[_ Three-dimensional graphics animation

of the space station, MSS, orbiter, and

payloads

Q Simulations of the operation of MSS

systems.

TIGERS (The Integrated Graphics Environment

for Real-Time Systems), a product of CAE

Electronics, provides the simulation environment

through which the MIKE (Manipulator

Interactive Kinematics Evaluator) kinematic

model and MIKEGRAF 3D animation software,

produced by Spar Aerospace, are integrated with

the 2D virtual display and control panels.

Models of MSS systems are easily added to the

simulation with all communication transpiring

through a local database residing on the IRIS or

a remote database residing on a remote host.

The simulation variables defined in the databases

can also be displayed and controlled by the 2D

virtual instruments created using the TIGERS

graphics editor. The graphics editor pages are

processed by a linker/librarian and then

displayed by the graphics page interpreter as

windows controlled by the TIGERS window

manager. The 3D animations are also displayed

as windows allowing the number of animation

views, their size and location on the screen to be

dynamically modified.

3.3.2 Two Dimensional Graphics Editor

Stylized panels and displays can be created using

the on-screen graphical interface of the editor.

Most inputs are made via pop-up menus and a

standard 3-button mouse. The graphics editor

provides a wide range of drawing tools, raster

and vector fonts, and mukiple dynamic attributes

that can be applied to graphical elements of

displays to make them respond to changing

simulation variables. Examples of dynamic

attributes include: color, size, position, rotation

angle, and digital and alphanumeric readouts.

Graphical elements can be combined into objects

and stored in libraries for use on several display

panels.

3.3.3 Virtual Displays and Controls

The virtual displays and controls created using

the graphical editor provide the user interface for

the MSS Kinematic Simulation Facility. The

current interface consists of a parent screen,

primary and secondary control areas, pulldown

menus, and virtual control panels containing

virtual instruments which interact with the MSS

system simulations. Virtual instrumentation

created using the editor includes digital readouts,

icons, virtual pushbuttons, status indicators, and

data input and feedback sliders. Figures 4

through 7 illustrate some typical prototype

control panels developed for MSS applications.

3.3.4 System Simulations

Although some control over the attributes of the

workstation prototype is available from the

run-time services of the 2D graphical display

manager, additional functionality may be

achieved through the use of simulation routines

which explicitly control the 2D graphical

attributes. These routines would be required to

simulate various menuing schemes or logic

related to systems or subsystems driving the user
interface.

3.3.5 Three Dimensional Graphic Modelling

Three dimensional (3D) graphical models of the

environment may be created and rendered in
individual windows under the control of the

window manager. Typical objects used in

operational analyses include the space station,

orbiter, manipulators, payloads, and free flyers.

The 3D views are used to simulate

out-of-window views from the orbiter or space

station, views originating from various closed

circuit television (CCI'V) cameras, or

synthetically generated images created from the

space station master object database.

The graphical objects are created from

combinations of the available 3D primitives which

include boxes, cylinders, cones, spheres, and

generic objects created by manipulation of
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vertices and polygons. Attributes such as the

position and orientation of a 3D object can be

dynamically modified by generic simulation
routines.

Objects may be individually rendered as wire

frame, filled polygon, or Gouraud shaded

polygons. From an operational analysis

perspective, it has been found to be

advantageous to allow concurrent display of wire

frame and filled polygons as the former allows

the operator a see-through capability which may

assist in determining the relative position of

objects. Object ordering is achieved through the

use of the IRIS z-buffer which operates in
double buffered mode.

The IRIS 4D-70 allows the use of multiple light

sources to illuminate the workspace and allow

some measure of realism to the view. It cannot

however, adequately simulate the effects of

shadowing and glare which have a significant

effect on visibility in space.

Onhogonal or perspective viewpoints are

available for display in each window. Viewing

parameters including pan, tilt, roll and field of

view, may be modified from a simulation

routine which relies on inputs from the 2D

virtual control domain or from alternate input

devices such as hardware switches or buttons. In

addition, the attachment location of a viewpoint

(camera) may be tied to any object such as a

manipulator which allows an assessment of

viewing capabilities from manipulator cameras.

Graphical objects may be bound to other

graphical objects to simulate the chaining of

manipulators or the acquisition and maneuvering

of payloads.

The 3D graphical displays are under the control

of the window manager which provides the ability

to:

simulate graphics over video by the

overlaying of 2D over 3D graphics.

O simulate split screen operation and

resizing by manipulation of 3D

windows using window manager

services.

3.3.6 Kinematic Simulations

The configuration of the manipulator is

controlled by a kinematic simulation routine

which performs the inverse kinematics required

to convert from a commanded point of resolution

(POR) to the set of joint angles required to

achieve the configuration. The set of joint

angles along with the base position and

orientation uniquely defines the manipulator

configuration and may be used by the 3D

graphical rendering routines to draw the

manipulator.

The kinematic simulation currently implemented

on the prototype has the following characteristics:

D "N" degrees of freedom: The SSRMS

will consist of a 7 DOF manipulator.

O Bi-directional Control: The SSRMS will

have the capability to attach itself to

grapple fixtures which supply power and
data transfer to both the base and end

effectors. This feature means that the

SSRMS can relocate itself by "walking"

off of the MSC and operating from a

grapple fixture at a remote location.

Q Coordinate Re-referencing: The SSRMS

may be controlled in any desired
reference frame. Reference frames are

selectable by the operator.

O Control Modes: Three main control

modes are associated with the SSRMS

kinematic model.

Single Joint Mode: Manipulator joints

may be controlled individually by the

operator using a suitable input device.

Automatic Mode: The manipulator

configuration may be controlled by an

automatic trajectory planner thus allowing

the execution of pre-planned trajectories.

Manual Augmented Mode: The

manipulator POR may be controlled by

a human operator using a handcontroller.
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3.3.7 Post Processing Functions

Post processing software is included in the facility

which allows analysis of simulation runs. Current

post processing capabilities include workspace

analysis and video recording and playback.

An interactive workspace analysis program allows

multiple instances of manipulator positions to be

superimposed. The investigator may then visually

determine the point of closest approach between

the manipulator and another object. The line of

closest approach may be quantified by calculating

the distance between the two points as defined
with a 3D cursor.

After the definition of a manipulator trajectory

the set of parameters relevant to the operation

may be saved to disk for off-line trajectory post

processing analyses or the creation of videos.

Animated videos may be created for engineering

presentations or public relations. The video

software will read the disk file, redraw the image,

and sent the appropriate commands to the

opticaldisk recorder for recording of the video

image. The images thus stored are spliced

together on a VHS editingtape recorder for

production of the finalvideo.

4.0 FUTURE DEVELOPMENTS

The MSS Program will achieve a higher level of

simulation capability with the development and

delivery of the MDSF (Manipulator Development

and Simulation Facility). The MDSF will

provide all the functionality of the MSS

Kinematic Simulation Facility along with the

following additional features:

C_ Real-time dynamic simulation of

generic manipulators with multiple

operator control stations

D 3D graphics editor

[_ Generic instructor station for operator

training

IS] Record and Playback functions

Simulation of elastic deformation of
bodies

{_ Collision detection algorithms

$.0 CONCLUSION

An implementation of computer graphics

technology in the design of a complex system has

been presented, specifically related to the

development of the Canadian Mobile Servicing

System and its IVA human-computer interface.

The systems design methodology, hardware and

software configuration, and current and future

uses of the facility have been discussed,

The application of currently available graphics

technology provides systems designers and

operations analysts with the ability to visualize

and simulate the capabilities of a complex system

in a cost-effective manner. The integration of

input/output devices with the simulation facility

provides a high degree of interactiveness allowing

the testing and verification of concepts

throughout the design process in a realistic
environment.
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Abstract

Research in computer animation and simulation of

human task performance requires sophisticated geo-

metric modeling and user interface tools. The soft-
ware tools for a research environment should present

the programmer with a powerful but flexible substrata

of facilities for displaying and manipulating geometric

objects, yet insure that future tools have a consistent

and friendly user interface.

Jack is a system which provides a flexible and ex-

tensible programmer and user interface for display-

ing and manipulating complex geometric figures, par-

ticularly human figures in a 3D working environ-

ment. It is a basic software framework for high-

performance Silicon Graphics IRIS workstations for

modeling and manipulating geometric objects in a

general but powerful way. It provides a consistent

and user-friendly interface across various applications

in computer animation and simulation of human task

performance. Currently, Jack provides input and con-

trol for applications including lighting specification

and image rendering, anthropometric modeling, fig-

ure positioning, inverse kinematics, dynamic simula-

tion, and keyframe animation.

1 Introduction

The great promise of computer graphics is visual-

ization, the ability to answer difficult problems and

convey complex information through computer gen-

erated images. The problem for researchers in com-

puter graphics is how to generate images which con-

vey such useful information. Recent advances in com-

puter hardware have revolutionized the capabilities

of graphics simulation systems. Today's hardware is

capable of displaying large numbers of graphics prim-
itives in real time. The task now is to take full ad-

vantage of these new graphics capabilities in software

modeling systems.

This charge applies especially to software for model-

ing geometric objects. The importance of visualiza-

tion in geometric modeling is quite obvious, but the

application of computer graphics goes beyond simply

generating static synthetic images. A modeling sys-

tems should give it user the ability to manipulate the

models, and the models should behave in a way which

conveys information back to the user.

User interface toolkits such as X-windows provide

good tools for designing interfaces to many types of

software programs, but they do not provide adequate

tools for constructing interfaces for manipulating ge-

ometric objects. Developers of software for computer
animation and simulation need similar sorts of tools

for assisting in the higher-level task of modeling, dis-

playing, and manipulating complex geometric figures.

Jack is a system being developed at the University of

Pennsylvania to support research in human task per-
formance in the Computer Graphics Laboratory. Its

goal is to provide a consistent and easy-to-use pro-

grammer utility for modeling, displaying, and ma-

nipulating complex articulated structures, and at the

same time provide a consistent and convenient user

interface across various applications. Jack runs on

the 4D Series Silicon Graphics IRIS Workstations,

and its intended user community consists primarily

of engineers with a basic understanding of robotics

and geometric modeling concepts.

Jack is very general in its ability to model articu-

lated figures, but its primary purpose is to support
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human factors analysis. The object modeling facili-

ties ill Jack are designed to handle the special difficul-

ties of modeling and manipulating human figures in a

3D working environment. There are many sources of

support for this project, each with its own emphasis

and application:

• NASA Johnson Space Center and Lockheed En-

gineering and Management Services, Graphics

Analysis Facility of the Man/Systems Division:

primarily Space Shuttle and Space Station ap-

plications, with major interest in reach, fit, and

view analyses, with active interest in strength

models, zero-gravity dynamics simulation, and

language-based task processing.

• NASA Ames Research Center: the A3I project

to simulate all aspects of a helicopter mission

is the application, with Jack providing the pilot

model and forming the basis for workload com-

putations. The pilot's mission and tasks are pro-

vided by an external AI-based simulator.

• Army Research Office, the Human Engineering

Laboratory at Aberdeen Proving Grounds: ap-

plication to multi-operator vehicles, with a pri-

mary interest in evaluation of reach, comfort,

strength, workload, and cooperative behavior.

• Pacific Northwest Laboratories, Battelle Memo-

rial Institute: application to control a mobile

robot mannequin used to test suit designs for

permeability to chemical and biological agents,

with a primary interest in animation control, safe

path determination, collision avoidance, and mo-
tion feasibility.

• State of Pennsylvania Benjamin Franklin Part-

nership: technology development in Artificial In-

telligence methods to aid human factors evalua-
tion.

• National Science Foundation: representations

and systems to assist in the interactive and au-

tomatic generation of natural, animated human
motion.

This project greatly benefits from its home in a Com-

puter and Information Science Department because

computational tools and techniques are essential for

such a broad spectrum of human performance prob-

lems.

This paper gives an overview of Jack. It explains

many of the features built into Jack, including its ob-

ject modeling facilities as well as its interaction mech-

anism for lnanipulating figures through direct manip-
ulation and inverse kinematics.

2 The Software Engineering

Aspect

In order for computer graphics to fulfill its great

promise, software developers must be careful to craft

their systems to be effective tools. The graphics im-

ages must be merely the means to the end and not a

burden to support.

This is especially important in a research environ-

ment, where researchers need to experiment with new

types of algorithms and techniques, yet produce soft-

ware tools which will be usable by non-programmers.

In such an environment, it is particularly important

to develop flexible and extensible software tools, since

it is not always possible to fully anticipate future de-

mands of the software. In this type of environment,

the modeling software cannot be a "black box" be-
cause it is frequently necessary to extend it or cus-

tomize it in various ways.

Jack is designed to be easily extensible. It is a com-

mand driven system: the user typically executes com-

mands by selecting items from pop-up menus, but

commands may also be entered explicitly from the

keyboard or read from command files. Jack is very

modular in that each command or group of commands

roughly corresponds to a specific utility. During de-

velopment, certain unnecessary utilities may be omit-

ted, drastically reducing the overhead of the develop-

ment process.

Jack follows a well-defined mechanism for defining

commands and controlling input from the user. This

mechanism makes it very easy to customize Jack for

specific applications. Many times such applications

evolve into sophisticated standard utilities. The sim-

plicity with which commands may be written and

added to the menus make it easy to manage the soft-

ware as it grows and encorporates new utilities.

3 The Peabody Object Repre-

sentation

The heart and soul of geometric modeling software

is the representation for geometric objects. This in-
volves much more that just the shape of the objects.

The models must represent information about how

the objects behave, how they simulate the behavior
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of the real-world objects they represent. The purpose

of the graphics facilities in the software is simply to

convey information about the models. If the under-

lying model is not rich in information, the graphics
facilities will have little use.

Jack is primarily a user interface which controls the

interaction with articulated figures represented by a

system called peabody. The name peabody refers to
both the internal data structures representing the ge-

ometric objects and to the external language for de-

scribing and storing them. Peabody objects are de-

scribed in text files, and Jack can be viewed as a

graphical editor for constructing and manipulating

these objects. By analogy, this editor is to the ge-
ometric objects what a word processor is to English

prose.

Peabody represents figures composed of rigid seg-

ments connected by joints, which may also be under
the influence of certain constraints. The segment is

the basic geometric primitive. The state variables of

each segment represent its mass and moment of iner-

tia, as well as its surface geometry, which is a bound-

ary representation. Segments also represent material

properties such as reflectance parameters and light
emission values.

Joints connect segments through attachment frames
called sites. A site is a local coordinate frame speci-

fied with respect to the base coordinate frame of the

segment to which it belongs. Segments may have any
number of sites. Joints connect sites belonging to dif-

ferent segments within the same figure. Constraints

are pseudo-joints which express relationships between

arbitrary sites in the environment.

3.1 Articulated Figures

One of the most important features of the peabody

representation is its model for the articulation of the

figures. Figures may be composed of any number of

segments connected arbitrarily by joints. Since each

segment may have any number of sites, and the sites

may be located anywhere on the segment, the "skele-

ton" of the figure is easy to define even if the segment
does not have a distinct proximal and distal end.

The joints may have arbitrary degrees of freedom,

which peabody represents as zero to six rotational or
translational components. A zero degree of freedom

joint is like a bolt and is not manipulatable. Each de-

gree of freedom may have upper and lower limits on
it range of motion, and the limits are enforced dur-

ing interaction. The degrees of freedom also represent
stiffness and dampening information for dynamic sim-

ulation.

The user treats figures as arbitrary collections of seg-

ments connected by joints, without imposing a pre-

defined hierarchy upon them. Jack encourages the

user to think of the geometric objects as an arbitrary

graph of segments connected by joints. It computes

the global position and orientation of each segment in-

ternally by first computing a spanning tree of the en-

vironment. This tree need only be recomputed when

a new joint or segment is created or deleted, i.e. when

the topology of the environment graph is altered.

Since this tree is computed internally, the user does

not have to think of a figure as a strict hierarchy

with a predefined root. This simplifies the operation

of "rerooting" a figure, either to attach a figure to

another figure, or to change the point of attachment

of a figure to the world coordinate frame. This scheme

makes it easy to specify transformations with respect

to arbitrary reference frames.

The arbitrary figure root is important for manipulat-

ing figures which must maintain contact which certain

points in space. This is especially true of manipulat-

ing figures in a zero gravity environment, where fig-

ures may be attached through arbitrary foot or hand

restraints. When a figure is attached to a hand re-

straint in zero gravity, a bend in the elbow results

in the movement of the entire body, rather than a

movement of the hand and arm, which remains fixed

at the point of attachment.

3.2 Human Figure Models

Although Jack is primarily a tool for human factors

analysis, it makes no formal distinction between hu-

man figures and other geometric objects. All objects
are described by peabody, and the human figure mod-

els used are described by data files designed to model

the human figure in the specific ways. This model is

external to the software itself, which makes it possible

to model figures with differing degrees of complexity.

Different body models may be used in different cir-

cumstances. For example, engineers in the Graphics

Analysis Facility at JSC have developed a model for

the Extra-Vehicular Activity suit which has restricted

ranges of motion.

In addition, the actual geometry of the individual seg-

ments is defined separately from the topology of the

figure, which is defined in terms of the locations of the

joint centers. This makes it possible to use different

body geometries with the same underlying topologies.

Jack currently has three basic body geometries. Each

model consists of 31 segments with 29 joints. The
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first model consists of 109 polygons and represents a

very crude, almost stick-figure, approximation to the

human body. An intermediate model consists of 408

polygons and resembles a robot-like figure. Finally,
a highly complex model has been derived from laser

scan data of human subjects. This model consists of

4571 polygons.

3.3 Anthropometry

The syntax of peabody language loosely resembles

data structure definitions in a traditional program-

ming language. The peabody language employs a

powerful mechanism for parsing arithmetic expres-

sions. These expressions may be used as part of the

definition of the figures, so that figures may be pa-
rameterized.

The ability to parameterize figures allows Jack to eas-

ily model human figures of arbitrary anthropometric

proportions. An auxiliary facility called SASS is a

spreadsheet program which allows the user to create

peabody human figure models of arbitrary anthropo-

metric sizes, based either on percentiles from specific

populations or from actual numerical values. It gen-
erates parameters for girth, joint limits, and centers

of mass. Currently, SASS uses NASA trainee popu-

lation data from the NASA Man-Systems Integration

Manual, Chapter 3 (NASA-STD-3000).

4 The Jack Window System

Jack uses the Silicon Graphics IRIS window manager,

4Sight, which run under the Unix operating system.

This window manager allows the user of the work-

station to create multiple windows and run different

graphics programs simultaneously. Jack creates win-

dows which provide views of geometric objects. These

windows may be moved and reshaped just like the

other window manager windows. This allows Jack to

be used as a "tool." The user may easily shift back

and forth between using Jack and using the underly-

ing operating system.

Jack derives most of its input from a three-button

mouse, with a little input required from the keyboard.

It is a menu-driven system, and commands are gen-

erally executed by selecting items from the pop-up

menus. Although Jack maintains unique names for

all geometric objects, it is usually possible to refer to

objects by pointing at them with the mouse. Most of

the keyboard input is in the form of single keystrokes

to invoke certain options. Very little typing is re-

quired, although it is possible to control Jack com-

pletely without the mouse if necessary. Jack avoid

being too cryptic in its keystroke bindings by dis-

playing information about the bindings whenever the

user is in a position to need them.

The execution philosophy of Jack is to select a high

level operation first, and then select the operands.

The user executes commands from a menu, such as

move figuxe, then he pick the appropriate object by

pointing at it with the mouse. Finally, he specifies the

value of the operation, i.e. a transformation, which is

usually manipulated interactively. Most operations

such as moving are terminated by hitting a special

key, such as the escape key.

4.1 Jack Windows

The parameters of each Jack window are easily to

tailor for specific applications and situations. By de-

fault, Jack displays the screen in a visually informa-

tive way by drawing a ground reference plane grid,
giving a perception of the orientation of the world co-

ordinate system. Jack draws orthogonal projections

of the figures in the scene on each of the coordinate

axis planes. These projections roughly resemble shad-

ows from three infinite orthogunal light sources and
serve as quick reference cues for the position and ori-

entation of the figures. The projections are drawn in

a darker color than the figures themselves, so they
do not distract from the rest of the scene. Since all

three projections are closely placed on the screen, the

user can quickly reference the orientation and relative

placement of neighboring objects in the scene. These

projections may be easily disabled, and may also be

enabled on a segment by segment basis.

Most aspects of the display are optional. The user

may choose to display the vertices, edges, or faces

of each segment. The edges are drawn in wireframe.
The face may be shaded and z-buffered, illuminated

by multiple light sources using the lighting model
hardware of the IRIS workstation. With the IRIS

hardware, there is no significant performance penalty

involved in the shading, and the user is free select ei-

ther shaded or wireframe display. The sites associated

with each segment may also be displayed. Sites are

drawn as a labeled xyz coordinate axis frame. This

allows the display to be tailored to suit a particu-

lar application, since all forms of display may not be

appropriate for all tasks.
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Figure 1: Tile Jack screen, with a human figure model

4.2 Viewing Facilities

It is especially important for modeling systems to pro-

vide good facilities for change the view. In the real

world, when someone is presented with an object to

observe, the natural reaction is to look at it from dif-

ferent directions, either by picking it up and moving

it around, or if it is too large to handle, by walk-

ing around it and looking at it from all sides. Soft-

ware which attempts to convey geometric information

through images should provide a similar ability.

Jack has a flexible way of manipulating the view.

The view in each Jack window is described by the

global position and orientation of a specific site on

a peabody figure. By default, a "camera" figure ac-

companies each window to represent the view. Mov-

ing the view in a window corresponds to moving tile

camera figure in a special way. This is especially ben-

eficial in the Jack windowing environment, since the

user may create different windows, each with a dif-

ferent camera. The camera figures may be displayed

just like any other figure, so it is possible to see and

manipulate in one window the camera of another win-
dow.

Jack allows the user to change the view by what it

calls sweeping and panning. The sweeping operation
moves the camera in circular arcs centered at a con-

stant reference point, called the view reference point.

The view may swing horizontally or vertically, or it

may zoom in and out, all controlled by the mouse.

This is beneficial for viewing a particular point in

space from different directions. Panning is the oppo-

site of sweeping: the location of the camera remains

fixed while it pivots up or down. The view reference

point changes as the camera turns. This is useful for

looking side to side, but it is also an easy way to move
the view reference point around in space.

The view in each .lack window may alt.ernativety he

"attached" to any site on ally figure. This makes it

possible to attach the view to the eyes of a human

figure model and see in the window what the figure

sees. This is particularly beneficial during the ani-

mation of the motion of a figure. The figure may be

manipulated from a secondary point of view, and the

animation may be played back both from the point

of view of the figure or from a fixed point.

Another application of the viewing mechanism is po-

sitioning light sources. A special light source posi-

tioning facility temporarily attaches the view to the

light and then allows the user to adjust the view. The

user sees in the window where the light shines.

5 Object Manipulation Facili-

ties

An important characteristic of truly manipulat-

able computer models of geometric figures is quick

turnaround time between the user's decision to posi-

tion the figure in a certain way and the time he ac-

tually accomplishes his goal. Most figure positioning

tasks in an interactive 3D environment either require

great precision, such as moving objects to tangency
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or contact, or are very general, in which case rough
positions are sufficient and precision is not an issue.

Generally, the more detailed the positioning task, the
more input may be required from the user. It is im-

portant for modeling software to be able to handle
both cases well because the user should not be forced

to enter complex input for a simple positioning task.

Jack provides several facilities for moving and ma-

nipulating objects. The user may use great precision

when necessary, hut may also quickly and intuitively

move objects around in the workspace without the

overhead of a complex positioning algorithm. The

direct manipulation scheme is useful for position ob-

jects with gross movements. The inverse kinematics

facility allows the user to position objects automati-

cally to achieve multiple simultaneous goal positions.

5.1 Direct Manipulation

Jack uses a "view based" 3D direct manipulation
scheme. All of the rotational and translational in-

put is obtained from the mouse, but the movement

of the mouse by the user is coupled to the current

view of the object being manipulated, so that there

is a direct and intuitive relationship between the di-
rection the user moves the mouse and the direction

the object moves.

For 3D translation, the user selects all axis of transla-

tion by holding down a button on three button mouse,

but after the axis has been selected, the direction of
movement of the mouse which cause movement of the

object along that axis is determined by the line which

that axis in space makes on the screen. The user may

also translate objects in a plane by holding down two
mouse buttons simultaneously, in which the move-

ment of the object is constrained to lie in that plane
and the location of the object is determined by the

point in the plane which lies underneath the mouse
cursor in the current view. The effect is a intuitive

way of translating objects, since the object "follows"
the mouse on the screen.

Rotations in 3D are accomplished with a rotation

"wheel", which is a graphical icon describing the axis

of rotation. The user selects the axis of rotation by

holding down a single mouse button, and the wheel

appears to demonstrate the selected axis. The ro-

tation is accomplished by moving the mouse around

the perimeter of the rotation wheel. The effect is also

fairly intuitive, since the user moves the mouse in cir-

cles around the object to cause the object to rotate.

The rotation and translation mechanisms are used

both for moving figures in the world coordinate frame

and for manipulating the displacements of joints.

Joints may have either rotational or prismatic con>

ponents in their degrees of freedom, and the user may

manipulate the joint using the direct manipulation fa-

cilities. If the joint has limits, the limits are obeyed

during the interaction, and the joint is not allowed to
violate the limit.

5.2 Inverse Kinematics

The direct manipulation facilities in Jack make it

easy to position entire figures and manipulate indi-

vidual joints by hand. But many positioning tasks
involve manipulating many joints simultaneously un-

til a certain condition is satisfied, such as tangency or
point-to-point contact. Jack has a sophisticated in-

verse kinematics facility which uses a gradient descent

algorithm to solve for a set of joint angles, within the

defined joint limits, which satisfy a number of ge-

ometric "goals". The user-selectable parameters of

the "reach" are the goal site, the end effector, and

the set of joints to be manipulated during the reach.

The objective function may encorporate a weighted

combination of position and orientation. During the

solution of a multiple goal reach, each goal may have

a separate weighting factor, which specifies the rela-

tive importance of each goal if the goals are not all

simultaneously reachable.

There are several variants of the reach algorithm.

First, the active reach attempts to model the behav-

ior of a real human subject performing a reach. It at-

tempts to solve the reach with af user-specified chain

of joints, but if the goal is not reachable, joints are

added to the joint chain, working towards the body

root, until the chain includes all joints between the
end effector and the root.

Another variant of the reach algorithm is a pointing

reach, which is useful for orienting the head and eyes

of a human figure for looking at a particular point in

space. The user input is similar to the ordinary reach,

but the algorithm manipulated the joints so that the

line of sight of the end effector is directed towards the

goal.

5.3 Keyframe Animation

Jack has a sophisticated keyframe animation subsys-

tem which allows the user to define groups and ac-

tions. Groups are sets of "things which change over

time", typically joints and constraints. Actions are

primitive sequences of changes to the values of the

elements of a group. Keyframes are sets of values for
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the elements of a group. A scene is a collection of

possibly overlapping actions.

The animation facility may be used directly for

keyframing known movements or interpolating be-

tween specific positions. It may alternatively be used

as a means of collecting, storing, and playing back

motions generated from external means, such as from

external dynamic simulation software. Typically, the

dynamic simulation produces output at specific time

slices, which may be greater or less then the desired

frame rate for playing back the motion sequence. The

features of the animation system allow this to be eas-

ily controlled.
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Abstract

Graphical manipulation of human figures is essen-
tial for certain types of human factors analyses such

as reach, clearance, fit, and view. In many sit-

uations, however, the animation of simulated peo-

ple performing various tasks may be based on more

complicated functions involving multiple simultane-

ous reaches, critical timing, resource availability, and

human performance capabilities. One rather effective

means for creating such a simulation is through a nat-

ural language description of the tasks to be carried

out. Given an anthropometrically-sized figure and

a geometric workplace environment, various simple

actions such as reach, turn, and view can be effec-

tively controlled from language commands or stan-

dard NASA checklist procedures. The commands

may also be generated by external simulation tools.

Task timing is determined from actual performance

models, if available, such as strength models or Fitts'

Law. The resulting action specifications are animated

on a Silicon Graphics Iris workstation in real-time.

1 Introduction

Simple computer animation is not so simple anymore.

What was once acknowledged as a "good" animation
is no longer acceptable. Animations are not neces-

sarily things which are "looked at" for aesthetic pur-

poses but are being used for practical applications

in science and engineering analyses. Human figure

animation, in particular, is receiving considerable at-

tention as new display systems and robust animation

software bring motion control and rendering capabil-

ities to a widening range of users. Animations are

created to evaluate the ability of people to fit or work

in designed environments, determine whether work

places satisfy their functional requirements, and an-

alyze human task performance in a given situation.

With the expanded role of animation and increased

viewer sophistication, the tools for developing anima-

tions for these analytic purposes have become consid-

erably more complex.

To gain control over complexity, animation tools are

becoming "task oriented." A system which allows a

process to be described at a level best suited for the

action allows the user to specify the action in the least

restrictive, and most natural, manner [4, 23]. This
important benefit becomes crucial as the animation

tools shift out of the animation production houses and

into other industries and laboratories; human factors

engineers often lack the manual and artistic skills nec-

essary for the specification of animation.

The solution to this problem is two-fold. New users

must be educated, but also, the vocabulary recog-

nized by the tools must be modified. Certainly, the
obvious conclusion is that the tools must understand

a "task level" vocabulary. Even with that higher level

of understanding, communication would still be lim-

ited as the user not only lacks the vocabulary, but

also the language for communication.

The ideal language for communication is one with

which the user is most comfortable. Natural language

parsers, however, are complex programs [3]. Further-

more, integrating such a program into the animation

environment introduces several interfacing problems

[5].

We shall describe here a prototype system in which

task animation is driven via natural language. We

PRECEDING PAGE BLANK NOT FILMED
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focus on the interface between tile natural language

parser and the motion generator. The paper is orga-

nized as follows. Section 2 discusses how we currently

limit the scope of the problem and describes the do-
main in which our animations are created. Section 3

describes relevant research. Section 4 discusses how

the parser and motion generator are integrated. Sec-

lion r_ describes the technique which is used to fill in

the tinting information tacitly embedded in the nat-

ural language commands.

2 Problem Domain

Since our goal is to investigate the linkage between

language and task animation, initially the task do-

main is limited to "simple" reaches and view changes.
(Karlin [17] investigated more complex motions; these

will be added to the system vocabulary later.) A

"simple" reach is one which requires no locomotion,
only movement of the arm or upper body. A view

change is a change in the orientation of a figure's head

(i.e. the figure's view of the world changes). While
seemingly very easy, these tasks already demon-

strate nmch of the essential complexity underlying
language-based animation control.

2.1 Task Environment

The tasks to be performed and animated all center

around a control panel (i.e. a finite region of more or

less rigidly fixed manually-controllable objects). By

using a control panel, it is obvious that many ev-

eryday tasks can be simulated. Some control panels

encountered in a normal day-to-day routine are type-

writer keyboards, elevator panels, light switches, and

car dashboards. We will use as a generic example the

remote manipulator system control panel in the space

shuttle (Figure 1) as it contains a variety of controls
and indicators.

The purpose of creating the task animation is for task

performance analysis. In particular, we want to de-

termine if some person, X, can perform a task, and

if so, we want to view the task performance. How-

ever, task performance depends on who is executing

the task. If X has short arms, then he might not

able to reach the control panel. Therefore, included

in our task environment is the ability to specify the

anthropometric "sizing" of the people to be included

[15]. The size is based on a percentage of some pop-

ulation data (e.g., NASA crew member trainees [1]).

For example, a 50%-ile man represents the average

man in some body of data, whereas the 95%-ile man

represents a man whose size parameters are m the

95 th percentile. Similar data should exist for women

over some population. Figure 2 shows 50 th and 95 th

percentile men and women based upon available data

[21].

3 Relevant Research

Zeltzer [26] first gave names to the various "levels"

of computer animation: "guiding level," "production

level," and "task level." Using his nomenclature, the

type of system we describe here is a "task level" sys-
tem. His system for controlling the walk of human

figure [25] is a specialized system for a particular task

to be performed (i.e., walking). For now, our "skills"

consist of reaching and viewing.

The Story Driven Animation System [22] accepts

modified natural language input and creates the cor-

responding animation. The emphasis in this work is

on story understanding and the ability to choose the

correct key frames. Similar high level (intelligent)

selection among existing key frames is also demon-

strated by Fishwick [11, 10]

MIRALOGIC [19] is an interesting approach to em-

bedding a high-level of understanding within an an-

imation system. Through the use of this expert sys-

tem, the user can specify rules for setting up an envi-

ronment and the system will identify inconsistencies

or potential problems and suggest possible solutions.

ASAS [20], and the other object-oriented systems it

exemplifies [19], can also implement task-level seman-

tics through task decomposition. A task can be de-

composed procedurally.

These systems all address a different type of prob-

lem than that which is being addressed here. The

tasks in our system are specified in natural (or any

syntactically-described artificial) language with the

purpose of examining task performance. As such, it

is easy to change the tasks as well as the anthropo-

metric parameters describing the performers.

4 Integrating Language

and Motion Generation

The primary focus of this work is to examine how

natural language task specification and animation can

be combined in an application-independent manner.

The burden of this requirement falls upon the link
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Figure 1: Space Shuttle Remote Manipulator System Control Panel

(a) 50th% man (b) 50ih% woman (c) 95th% man (d) 95ih% woman

Figure 2: Anthropomorphically Valid Articulated Figures
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between these two environments. To illustrate the

situation, we will discuss a sample natural language
script actually used to create an animation:

is a 50 percent man.

is a 50 percent woman.
look at switch twf-l.

turn twf-1 to state 4.

look at tglJ-1.

look at twf-2.

turn tglJ-I on.

look at twf-3.

turn twf-3 to state 1.

look at tw_-3.

look at S.

look at J.

This type of script is common in performing checklist

procedures such as those done in airplanes or space

shuttles [2]. The verb "look at" represents a view

change and the verb "turn" involves a simple reach.

(The parser accepts a larger variety of syntactic con-

structions than illustrated by this example [5].)

The two primary problems are specifying reach and
view goals, and connecting object references to their

geometric instances.

4.1 Specifying Goals

A goal for a reach task is the point which the hand

should touch. For this particular type of task, such

a goal has three positional degrees of freedom, al-
though there are situations in which rotational de-

grees of freedom may be considered as well. A view

goal is a point in space toward which one axis of an

object must be pointed.

Within an animation environment, such goals repre-

sent points in space (for position goals) or coordinate

reference frames (for position and rotation goals) ul-
timately specified numerically with respect to a coor-

dinate system. Within the natural language environ-

ment, the goals are not coordinates, but rather are

represented by objects as in, for example, the com-
mands:

J, look at switch twF-l.

S, turn switch tglJ-I on.

The information regarding the exact locations of the

switches is basically unimportant at the language

level. Somehow, the switch name tglJ-1 must be

mapped to the appropriate switch on the panel in the

animation environment. The same process must be

followed for the target object toward which an object

axis must be aligned in a view change. This problem

reduces to one of object referencing.

4.2 Object Referencing

In general, all objects have names. Although the

names may be different in the animation and language
environments, providing a map between the names is

not difficult. This, of course, assumes there is a one-

to-one correspondence among the names. Such a re-

quirement, however, defeats the goal of independence
between the environments.

The problem domain specifically includes control pan-

els. From a task specification perspective, a control

panel is a very complex object consisting of many fea-

tures such as controls, indicators, etc. From a com-

puter graphics perspective, the most salient feature

of the control panel is its appearance, not necessar-

ily the detailed geometry of the individual switches.

An object such as a control panel can most efficiently

be represented as a single textured object which can

then be mapped onto a polygon. The alternative of

representing each individual switch would require a

large number of polygons and an extensive amount of

digitizing work to obtain a visually adequate repre-
sentation of the switches.

By allowing each environment to represent the panel

in a manner that is best suited for the way in which

it will be referenced, the one-to-one correspondence

among names is lost. The many objects in the task

specification environment all correspond to a single

texture mapped panel. A method is needed which will

allow the construction of a mapping of feature names

in the task specification environment to texture map
locations in the animation environment.

We used a paint program as the basis for such a tool.

Since a paint program allows one to create the texture

maps in image space, additional input was required

to specify the polygon on which the image is to be
mapped. With that information, important locations

on the texture map could be identified and given at-
tributes (e.g., switch or indicator, rotary control or

push button, etc.), and the corresponding locations

on the polygon were calculated. The output of this

tool provided input to both the semantic knowledge
base and the geometric database.

4.2.1 The Knowledge Base

The knowledge base needs to contain information

about object names and hierarchies, but need not
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be concerned with actual geometry oi' location. Fur-

thermore, as the task specifications and object_ defini-

tions become more complex, the knowledge base can

contain causality relationships. For exanqple, turning

switch tglJ-1 to on may cause some other object to

move or change state [5]. We use a frame-like knowl-

edge base called DC-RL to store semantic information

[8].

Object information must be entered into the know]-

edge base manually, as it can differ for each con-

trol panel, but the name mapping program described

above can be used to specify the linkages into the

animation environlnent.

For example, here is a section of an actual map file.

{ concept ctrlpanel from panelfig

having (

[role t_F-I _ith

[ va.lue = ctrlpanel.panel.t_f_J ]]

[role twF-2 _ith

[ value = ctrlpanel.panel.twf_2 ]]

[role twF-3 _ith

[ value = ctrlpanel.panel.twf_3 ]]

[role tglJ-i _ith

[ value = ctrlpanel.panel.tglj_l ]]

[role tglJ-2 with

[ value = ctrlpanel.panel.tglj_2 ]]

)

The relewmt part of the peabody description of the

panel figure is shown:

figure ctrlpanel {

segment panel {

psurf = "panel.pss";
site base->location =

trans(O.OOcm,O.OOcm,O.OOcm);

slte twf_l->location =

trans(la.25cm,163.02cm,80.86cm);

site twf_2->location =

trans(64.78cm,llS.87cm,95.00cm);

site twf_a->location =

trans(52.84cm,129.09cm,91.43cm);

site tglj_l->location =

trans(g2.36cm,158.ggcm,81.46cm);

site tglj_2->location =

trans(9.15cm,l15.93cm,94.98cm);

}

This entire file is automatically generated based upon

the map file. Since the panel is a rigid object with no

movable parts, no joints are required. The location of

each site (each of which represents a different switch)

was calculated in the paint program (which created

the file) by applying the texture mapping transforma-

tions normally applied when the image is rendered.

The names twF-1, twF-2, tglJ-I correspond to

the names of switches manually created in the

existing knowledge base panel description called

panelfig. These names are mapped to the corre-

sponding names in the animation environment (e.g.,

ctrlpanel.paael.twf_l, etc.) and are guaranteed

to match as the actual object within the animation

environment is automatically generated.

4.2.2 Tim Geometric Database

The geometric database is called the Peabody Envi-

ronment Network (or just peabody). In peabody, a

figure is composed of a set of segments, each of which

may have geometry associated with it. The geom-

etry within each segment is defined within its own

local coordinate systenq. Joints connect segments at

attachment points called sites. A joint is actually a

transformation between sites and hence sites have an

orientation as well as a location. Segments can have

any number of sites and it is through those sites that

the different interesting points on the texture map are

identified for the animation environment.

4.3 Creating an Animation

Mapping objects from the task description environ-

ment to the animation environment provides one of

the crucial links needed for creating an animation.

The language processor provides another link. Our

Motion-Verb Parser (MVP) [5] uses both a subset of

natural language and an artificial language (NASA

checklists) for its syntax. Information obtained dur-

ing the parse is stored in the semantic knowledge base

DC-RL. The natural language task descriptions that

are included in the problem domain are such that a

single animation key frame can be developed from a

single command. Each part of speech fills in slots in

an animation command template.

Figure 3 shows the relationship between the task

specification and the animation commands. A "turn"

command specifies a reach which can be solved using

inverse kinematics; a "look at" command specifies an

orientation change which can also be solved using in-

verse kinematics [6, 14]. Frames from an animation

created using the script shown in Section 4 are shown

in Figure 4.
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J look at switch twf-1. =:=:*

.1 turn twf-1 to state 4.

S look at tglJ-1. ==;,

S turn tgl,l-1 on.

point_at (" ctrlp anel.panel.twf_l" ,"J .bottom_head.between_eyes" ,( 1,0,0));

reach_site(" ctrlpanel.panel.twf_l" ,"J .right_h and.fingers_distal" );

point_at('e trlpanel.panel.twj_l" ,"S.bottom-head .between_eyes", ( 1,0,0));

reach_site(" ctrlpanel.panel.twj_l" ,"S.left-hand.fingers_distal" );

Figure 3: Natural Language Input and Animation Commands

5 Default Timing Constructs

Given that the basic key frames can be generated

hased upon a natural language task description, cre-

ating the overall animation can still be somewhat dif-

ficult. Techniques for creating motion by animating

tile solution algorithm such as those done by Badler,

Manoochehri and Walters [6], Witkin, Fleisher and

Barr [24], or Barzel and Barr [7] are themselves inap-

propriate for task performance analysis. Instead, the

positions created must be taken for what they are:

the desired configuration of the body at a particular

time. The exact time, however, is either unknown,

unspecified, or arbitrary.

The timing of actions could be explicitly specified in

the input, but (language-based) task descriptions do

not normally indicate time. Alternatively, defining

the time at which actions occur can be arbitrarily

decided and a reasonable task animation can be pro-

duced. In fact, much animator effort is normally re-

quired to temporally position key postures. There

are, however, more reasonable ways of formulating a

guess for possible task duration.

Several factors effect task performance times, for ex-

ample: level of expertise, desire to perform the task,

degree of fatigue (mental and physical), distance to
be moved, and target size. Realistically speaking, all

of these need to be considered in the model, yet some

are difficult to quantify. Obviously, the farther the

distance to be moved, the longer a task should take.

Furthermore, it is intuitively accepted that perform-

ing a task which requires precision work should take

longer than one not involving precision work: for ex-

ample, threading a needle versus putting papers on a
desk.

Fitts [12] and Fitts and Peterson [13] investigated

performance time with respect to two of the above

factors, distance to be moved and target size. It was

found that amplitude (A, distance to be moved) and

target width (W) are related to time in a simple equa-
tion:

2A

Movement Time = a + blog

where a and b are constants. In this fornmlation, an

index of movement difficulty is manipulated by the

ratio of target width to amplitude and is given by:

2A

ID = log -_-

This index of difficulty shows the speed and accuracy

tradeoff in movement. Since A is constant for any

particular task, to decrease the performance time the

only other variable in the equation W must be in-
creased. That is, the faster a task is to be performed,

the larger the target area and hence the movements
are less accurate.

This equation (known ms Fitts' Law) can be embed-
ded in the animation system, since for any given reach

task, both A and W are known. The constants a and

b are linked to the other factors such training, desire,

fatigue, and body segments to be moved; they must

be determined empirically. For button tapping tasks,

Fitts [13] determined the mean time (Mr) to be

MT = 74ID- 70msec

Although Fitts' Law has been found to be true for a

variety of movements including arm movements (A =

5 - 30era) and wrist movements (A = 1.3cm) [9, 16,

18], the application to 3D computer animation is only

approximate. The constants differ for each limb and

are only valid within a certain movement amplitude

in 2D space, therefore the extrapolation of the data

outside that range and into 3 dimensional space has

no validated experimental basis.

Nonetheless, Fitts' Lag' provides a reasonable and

easily computed basis for approximating movement
durations. Should a more exact model be developed,

it should readily fit into a 3D computer animation
environment in which default task durations must be

computed.
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(a) (b)

(c) (d)

(e) (r)

Figure 4: Animation Frames Showing "Look" and "Reach"
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6 CONCLUSIONS AND

FUTURE WORK

One of the goals of the Computer Graphics Research

Lab at the University of Pennsylvania is to develop

human task performance analysis tools specifically for

users who are engineers and not particularly likely

to be animators. Higher-level animation tools are

deemed essential to the satisfaction of this goal. We

have demonstrated the feasibility of building a com-

plete pipeline of processes beginning with natural lan-

guage input, proceeding through semantic resolution

of simple tasks, default task time durations, and ob-

ject references, and ultimately terminating in inverse

kinematic positioning and rendered graphics. The

pipeline confronts the issues of establishing appro-

priate linkages between objects, time, and actions at

the language and geometric levels without adopting
ad hoc solutions such as the selection of pre-defined

key frames or the use of fixed default timings.

Of course, the model is quite incomplete in many re-

spects, but we have work in progress in many areas,

including:

Extending the knowledge base to more com-

plex task verbs and more general object envi-
ron ments.

Extending the animation interface to include dy-
namics and constraints as well as inverse kine-
matics.

Extending the task processor to a more general

task simulator which handles temporal expres-

sions, resource management, and task interrup-
tion.

Extending the panel editor to permit on-line

changes to panel object locations and semantics.

Ultimately the user should be able to control most

of aspects of the animation (excepting the creation

of the actual geometric environment) through a

language-based interface. This will include the ability

for parameterizing (1) bodies, (2) object and object

feature locations, and (3) tasks. With this capability,

experiments can be performed without descending to
the key frame level for animation.

7 Acknowledgements

Many people helped developed the software described

in this paper: especially Jean Griffin, Cary Phillips,

Aamer Shahab, and Jianmin Zhao.

This research is partially supported by Lockheed En-

gineering and Management Services, Pacific North-

west Laboratories B-U0072-A-N, the Pennsylvania

Benjamin Franklin Partnership, NASA Grants NAG-

2-426 and NGT-50063, NSF CER Grant MCS-

82-19196, NSF Grants IST-86-12984 and DMC85-

16114, and ARO Grant DAAG29-84-K-0061 includ-

ing participation by the U.S. Army Human Engineer-

ing Laboratory.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Man-system integration standards, NASA, nasa-

std-3000 edition, March 1987.

Space Shuttle Flight Data File Preparation Stan-

dards, Flight Operations Directorate, Opera-

tions Division, NASA Johnson Space Center,
1981.

Allen, James, Natural Language Understanding,

Benjamin/Cummings, 1987.

Badler, N., A representation for natural hu-

man movement, Technical Report MS-CIS-86-

23, Dept. of Computer and Information Science,
Univ. of Pennsylvania, Philadelphia, PA, 1986.

Badler, N. and Gangel, J., Natural language
input for human task description, In Proc.
ROBEXS '86: The Second International Work-

ship on Robotics and Expert Systems, Instrument

Society of America, June 1986.

Badler, N., Manoochehri, K., and Walters, G.,

Articulated figure positioning by multiple con-

straints, IEEE Computer Graphics and Applica-
tions, Vol. 7, No. 7, June 1987.

Barzel, R. and Barr, A., A modeling system

based on dynamic constraints, Computer Graph-
ics, Vol. 22, No. 22, 1988.

Cebula, D., The Semantic Data Model and

Large Information Requirements, Technical Re-

port MS-CIS-87-72, Dept. of Computer and

Information Science, Univ. of Pennsylvania,
Philadelphia, PA, 1987.

Drury, C., Application of Fitts' Law to foot-

pedal design, Human Factors, Vol. 17, No. 17,
1975.

202



[10]Fishwick,P., Tile roleof processabstractionin
simulation,IEEE Trans. Systems, Man, and Cy-

bernetics, Vol. 18, No. 18, aan./Feb. 1988.

[11] Fishwick, Paul A., Hierarchical Reasoning: ,5'iT,-

Mating Complez Processes over M_dtiple Levels

of Abstraction, PhD thesis, Dept. of Computer

and Information Science, Univ. of Pennsylvania,

Philadelphia, PA, 1986.

[12] Fitt.s, P., The information capacity of the hu-
man motor system in controlling the amplitude

of movement., Journal of Experimental Psyehof

ogy, Vol. 47, No. 47, 1954.

lie] Fitts, P. and Peterson, J., Information capacity

of discrete motor responses, Journal of Ezperi-

mental Psychology, Vol. 67, No. 67, 1964.

[14] Girard, M. and Maciejewski, A., Coinputational

modeling for the computer animation of legged

figures, Computer Graphics (Proc. SIGGRAPtt

8,5), Vol. 19, No. 19, 1985.

[15] Grosso, M. and Quach, R., Anlhropometry for

Computer Graphics Human Figures, Technical

Report, Dept. of Computer and Information Sci-

ence, Univ. of Pennsylvania, Philadelphia, PA,
1988.

[16] .lagacinski, R. J. and Monk, I). L., Fitts' Law
in two dimensions with hand and head move-

ments, Journal of Motor Behavior, Vol. 17, No.

17, 1985.

[17] Karlin, R., SEAFACT: A semantic analysis sys-
tem for task animation of cooking operations,

Master's thesis, Dept. of Computer and Infor-

mation Science, Univ. of Pennsylvania, Philadel-

phia, PA, December lq87.

[18] Langolf, G. D., Chaffin, 1). B., and Foulke, J. A.,
An investigation of Fitts' Law using a wide range

of movement aplitudes, Journal of Motor Behav-

ior, Vol. 8, No. 8, 1976.

[19] Magnenat-Thahnann, N. and Thalmann, D.,
MIRANIM: An extensible dircctor-oriented sys-

tem for the animation of realistic images, 1EEE

Computer Graphics and Applications, Vol. 5, No.

5, October 1985.

[20] Reynolds, C., Computer animation with scripts

and actors, Computer Graphics (Proc. SIG-

GRAPH t982), Vol. 16, No. 16, 1982.

[21] Reynolds, Herbert M., The inertial properties
of the body and its segments, NASA Reference

[22]

[2a]

[24]

[25]

[26]

Publication 102.{: Anthropom_.lric Source Book,

Vol. 1, No. 1.

Takashima, Y., Shimazu, tl., and Tomono, M.,

Story driven animation, Proc. of Computer Hu-

man Interface and Graphws Interface, 1987.

Wilhelms, J., Toward automatic motion control,

IEEE Computer Grapl_ics and Applications, Vol.

7, No. 7, April 1987.

Witkin, A., Fleisher, K., and Barr, A., Energy

constraints on parameterized models, Computer

Graphics, Vol. 21, No. 21, 1987.

Zeltzer, D., Motor control techniques for figure

animation, IEEE Computer Graphics and Ap-

plications, Vol. 2, No. 2, September 1982.

Zeltzer, D., Towards an integrated view of 3-D

computer animation, Proc. Graphics Interface

"85, 1985.

203





N90- 2067

SE$ CUPOLA INTERACTIVE DISPLAY
DESIGN ENVIRONMENT

Bang Q. Vu & Kevin R. Kirkhoff
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INTRODUCTION

The Systems Engineering Simulator,located atthe
Lyndon B. Johnson Space Center in Houston, Texas, is

tasked with providinga real-timesimulatorfor developing
displays and controls targeted for the Space Station
Freedom. These displaysand controlswillexistinsidean
enclosed workstation located on the space station. The

simulation is currentlyproviding the engineering analysis
environment for NASA and contractorpersonnelto design,

prototype,and testalternativesforgraphicalpresentationof
data to an astronautwhile he performs specifiedtasks. A
highly desirableaspect of thisenvironment isto have the

capabilityto rapidlydevelop and bringon-linea number of
differentdisplaysforuse in determining the bestutilization
of graphicstechniquesin achieving maximum efficiencyof

the testsubjectfulfillinghistask.

The Systems Engineering Simulator now has

availablea toolwhich assistsin the rapid development of
displays for these graphic workstations. The Display
Builderwas developed in-house to provide an environment
which allows easy constructionand modificationof displays
withinminutes of receivingrequirementsforspecifictests.

SO--ARE DESIGN

Program Structure

The Display Builderiscompiled to run under UNIX
AT&T System V on a Silicon Graphics' IRIS 4D/70 GT
graphics workstation.Ithas fourteen modules, and nearly
11,500 linesof C sourcecodes. Four modules are dedicated

entirelyto 2-Dimensional (2D) graphics;four are dedicated

to3-Dimensional (3D) graphics,and therestto userinterface
and displaylistmanagement. The executablesizeisroughly
400K bytes.

Data Structure

The displaylistis implemented as a doubly linked
list.Each node in the listcontainsvarious house-keeping
data as well as an union (set)of all structures(records)

representing2D and 3D primitives.The advantage of using
the union featureof C isthatalthough the primitiveshave
variable length, they all fit into a node, thus greatly

simplifyingthetaskofdatamanagement.

USE! INTERFACE DESIGN

Any software, especiallyan interactivegraphics
applicationsystem, isoftenjudged primarilyon itssuccess
to deliveritsfunctionalitiesto the users.Even ifthe system

is computation-intensive, what good is it if itfallsto
communicate effectivelywith the human operator?In the

worst case the acceptabilityof the whole program may be

invalidatedbecause even the experienced users shy away

from a poorly-designed User Interface(UI). The Display
Builderemploys a direct-manipulationUI popular on many

modern interactivegraphicssystems.

UI Desigm .Strategy
The Display Builder'sUI letsthe user manipulate

objects directly on the screen. This type of interfaceis
popularbecause itiseasytolearn,and easyto use;however,
itis also one of the most difficultto implement. Direct-

manipulation UI is often complex due to stringent
performance requirements ( rapid actions and feedbacks),
elaborategraphics,asynchronous inputdevices,and various

ways to give the same command (keyboard and mouse).
Currentlythemost successfulstrategyto createa reliableUI

is the IterativeDesign method. Under this method,
prototypesof the Display Builderwere iterativelytestedand
modified based on users'comments togeneratethe finalUI.

Couud Luguge
Command languages appear inallcomputer systems.

A command language is the setof actionsa userisallowed
to have and the methods through which he can request a

particular action. In designing the Display Builder's
command language, the followingissueswere resolved:

Couamd Style: The Builderis both keyboard-

dialogue and menu driven.Dialogues are of a very simple
nature and conducted insidea dialogue box. For example,
the Buildermay prompt for a stringor a number, in which

case the userwould proceed to typein the requesteddata.It
may ask for an answer, such as "yes"or "no",in which case
the choices are presented and can be selected.Most of the
time,the Builderismenu driven.Selectingeitheran answer

from the dialogue box or a choice from a menu can be done
by the mouse or keyboard shortcut(seeFIG 1,2,3).

Couud Modes: The builderhas a dual mode,

2D and 3D, command language,and thereforeinterpretsuser

actionsin two differentways. For instance,ifthe Builderis
in 2D mode and the userrequeststo move an object,he can
move only2D objects.The userswitchesfrom one mode to
the othervia the main menu (see FIG 2). The dual mode

method is chosen because itimproves the UI by cutting
down the size of many menus, and contributesheavily to

program maintainabilityby keeping modules handling 2D
and 3D graphicsseparate.

Couud Abm't & Errm- Hudlli.mg: These are

usually the most criticalareas of any interactivesystem
because of the presence of an unpredictablehuman in the

process.The Builderallows the userto abort any single-or
multi-stepcommand by pressingthe ESC key. In case of
usererror,such as opening a nonexistentfile,a beep would

PRECEDING PAGE BLANi_ I_OT F_LMED
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sound, the filename togetherwith an errormessage appears
in the dialogbox and the usercan then correctthe erroror
abort the command. Because the Quit actionirretrievably

destroys the drawing, it is implemented as a two-stage
command. If the user chooses thisaction,the following

warnings occur:a beep would sound, and a prompt appears
in the dialogbox. Then the usercan abortthe command or
confirm itby clickingthe mouse's rightbutton.

lnformstimt Displtys
This is one of the most subjective and therefore

troublesome areasof UI design:how to displayinformation
in the most "effective"manner. Screen layout and object
displayarethe two itemsof interest.

$creem L87ouc: The prompts for the universal
command abort key (ESC), current filename, current
drawing color, and current builder mode (2D/3D) are

displayedin the upper leftcorner.The dialogbox islocated
in the upper rightcorner(seeFIG I).The drawing areacan
be created and moved to any place on the screen. Menus

appear on the rightsideof the screenonly when needed.

Object Dis'pla T. The Display Buildermakes no
distinctionbetween 2D and 3D objects;they coexistin the

same drawing space. The usercan allocateany area of the
screen,eithersame or separate,to 2D and 3D objects.All
objectswillautomaticallybe clippedto fitinsideitsallocated

space.

Internctive Grnplticsl btpm Teclutiques
The user interactswith the computer through a

graphicaldisplay.He isgenerallynot skilledin graphics,
and only interestedin how fastand easy itisto accomplish
his task.Interactivetechniquesreduce the need for great
manual dexterity and the effortrequired to draw and

manipulate objects visible on the screen. Feedback,
Selecting,and Positioningare thetechniquesofinterest.

Feedbsck: This is an essentialcomponent of

graphicalinteraction.Feedback techniques helpto provide
immediate confirmation to the extent or intentionof the

user'saction. For instance,if the user selects multiple

objectstodelete,and no feedback isprovided,the userisleft
to wonder whether he has made the rightselections.The
uncertaintywilleventuallybe answered when he givesthe
deletecommand, but the efficiencyof interactionisseverely

hampered. The Builder uses highlighting,bounding box,
blinking color, prompts, and beeping noise to provide
feedbacksto theuser.

Selecting: the need to select primitive(s)to
manipulate is one of the most basic interactivegraphics

techniques. The Builder supports different selection
techniquesdepending on the mode itisin.

2£) selecting:The user can selectone or many 2D

primitivesunambiguously by pointingto and clickingon
specificspotslocated on these primitives.These selection
pointsappear only when required in logicalplaces such as
thecenterof a circleor thebottom leftcornerof a button(see

FIG 5). Feedback isprovided by immediate highlightingof
selectedselectionpoints.

3D seJec_ing:The user can selectone or many 3D
primitivesby clickingon theirnames in a lineardisplaylist
which appears when required. Feedback is provided by
immediate blinkingof selectedprimitive(s).

Positioming: The Builder supports the following
techniques to positiona new 2D primitiveor relocatean

existingone:grid,rubberbanding, dragging,and aligning.

Grid.-A gridisprovided.The user has the optionof
choosing a background or foregroundgridor no gridatall.

Rubber Banding: Most 2D primitivesare createdwith

rubberbands. For example, the userdefinesthe firstpointof
a line.As he moves the mouse, the Builder draws a line

from the firstpointto the currentcursorposition.When the
second pointisdefinedby the second click,the rubberband

disappears,and the permanent lineisdrawn. This technique
takesthe guess work out of positioninga new primitiveas
the user can see instantlyhow largeand where itis on the
screen.

Dragging: This technique is used with moving or

copying 2D primitives.For example, the user startsby
selectingthe primitive(s)thathe wants to relocate.Then he

can "drag" theiroutlinesto the new location.The selected
primitivesare permanently moved when the userdefinesthe
finallocationby clickingthemouse.

A//gning.-There arefourways to align2D primitives:
left,right,top, and bottom. All selected primitives are
automa_/callyaligned.

3D graphics does not lend itselfwell to the above
techniques.Currently,the only way to positiona new 3D

primitiveor repositionan existingone isto enternew data
via the dialog box. After the objecthas been completely
defined,itwillbe redrawn atthenew location.

FUNCTIONAl. CAPABILITIES
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Anything drawn insidea displayis done through a

primitive,for example, a line,a number or a button. A
primitiveisa packet of dataused to constructa numerical or
graphical representationof information in a display.This
dataisstoredin the display'sdatafileand used by the real-

time software to draw each primitive.The followingterms
willbe used to describesome featuresof the primitives:

SYSID: An index into a block of shared memory that
interfacesbetween the displayand thesimulation.

THRESHOLD." Used to denote a caution state(yellow),
and criticalstate(red).Thresholdsare optionalwithineach

primitive.

TRANSITION STATE: In the switchprimitive,the time

between the user requestinga switch be activated,and
gettingan indicationfrom the math model thatthe switch
has been activated.

2D Actioms & PrimiLive_s

The user can create2D primitivesin a displaywith
minimal effort.For instance,he buildsa circleby pointing

to a spot on the screen where it willreside,defining the
centerwith the firstclickof the mouse, rubberbanding the

circleto the desired size,terminatingwith another mouse
click.Data forthatprimitivemay be editedatthattime,or
leftuntiltheentiredisplayiscreated.

The following actions can be performed on 2D
primitives:

Edit

Delete
Move

Save
Read

change any or alldataof a selectedprimitive.
(See FIG. 5).

remove selectedprimitive(s).
move selectedprimitive(s).
duplicateselectedirimitive(s).

top,bottom, leftorrightjustify
selectedprimitive(s).
save selectedprimitive(s)to a diskfile.

readprimitive(s)from a diskfileand insertthem
intothe displaylist.

2D Primitive List (seeFIG 3):

Header - Contains display size,font and the length, in

bytes,of the displayfile.
- Contains thresholding.

SinglePrecisionReal - Contains thresholding.

Double PrecisionReal -Contains thresholding.
Hexidecimal - Contains thresholding.
Asciimessage -Shows eightcharactersof variabletext.

Statictext-Shows eightcharactersoffixedasciitext.

Button or Switch - May be a toggle or momentary switch.

These primitivesaresimilarinfunctionand makeup except
that a momentary switch is activatedwhen the mouse

buttonispressed,and de-activatedwhen released.
Keyboard input - Allows the user to enter data into the
simulationfrom the keyboard.

-Activatesnew displays.
Default-Allows a userto customizea screenlayout.

Indicator-Reflectsthe stateofitsrelatedsysid.

Circulargauge -These come in two types,increasingand
decreasing,and three sizes.A needle moves between the

upper and lower limitsin a forty-fivedegree,sixo'clockto
threeo'clockpattern.The actualvalue isdisplayedin the
lower rightquadrant of the gauge. Contains thresholding.
Meter bars- Dynamically sizedby the user,and may be
horizontalor vertical.They arerectangularwitha cyan bar

and are functionallysimilar to the gauges. Contains

thresholding.
Dynamic position indicator- A pointerwhich moves,
horizontallyor vertically,on a bar,proportionallybetween
an upper and lower limit.This pointermay be designated
as a caret,cross-hair,and filledor empty square,circle,

triangle.
Line -Explicitinprimitivename.

Circle-May be filledor empty.
Rectangle-May be filledor empty.
Pol_._y.g_on-Can have a maximum of ten verticesand be
empty orfilled.

3D Actions & Primitives

There are many ways to construct3D objects;for

example, one can build an image of a car by connecting
differentsurfaces,or an image of a house by using various

primitivessuch as boxes or cylinders.The Display Builder
letsa userconstructa 3D objectby combining 3D wireframe
primitivestogetherusingdataenteredthroughthekeyboard.

The following actions can be performed on 3D

primitives:

Edit change any or alldataofa selectedprimitive.
Delete remove selectedprimitive(s).

Co_9p.,E duplicateselectedprimitive(s).
Save saveselectedprimitive(s)toa diskfile.

Read read primitive(s)from a diskfileand insertthem
intothe displaylist.

3D Primitive List (seeFIG 6):There are two categories

of3D primitives:Graphic and Control.

The followinggraphicprimitivesarevisibleon the screen:

3D line- Must specifyx,y,z coordinates.
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Box - Must specifyx,y,zcoordinates.
-Must specifycenter,diameter,length,number

of wireframe linesand angleof rotation(usedfordefining
partialcylinders).
Sphere- Must specify center, radius and number of
wireframe lines.

The following controlprimitivespositionand orienta 3D
object:

Header - Contains distanceof theeyepointfrom the origin,

near and far clipping planes, angle of perspective,and
whether ornot the displaywillbe z-buffered.

- Contains sysidsfor securing state
vectordataforreal-timepositioningof an object.

End frame -end of objectforstatedataapplication.
Ref Frame - definethe coordinatesystem used to builda
3D object.

Rotation -Must specifythe axisof movement, and degree
of movement per passof thereal-timesoftware.
Translation - Must specifythe axis of movement, and
distanceofmovement per passofthe real-timesoftware.

Scale - Must specify the axis of movement, and
distance/degreeof movement per pass of the real-time
software.

CONCLUSION

Because of the highly developmental nature of the

simulation workstation displays, it was essentialthat a
displaybuilderbe createdthathas the capabilityto quickly
createand modify a display,forevaluationinthe simulation,

in a shortamount of time. This "rapidprototyping",along
with a conscious effortto design and writesoftwarethatis
easy to maintain and add prototypesas needed, makes the
Display Buildera usefuland essentialtoolinthe generation

and modificat/onof displaysforuse in the SES.
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INTRODUCTION

In some man-in-the-loop simulations,

immediate visual feedback is essential

in providing the astronauts with the

real world representation of their

operating environment in order to

successfully complete the designed

task. This is especially true in space

station/space shuttle docking (Figure

i) and space station/space shuttle

payload hand-off (Figure 2) scenarios.

More importantly, when a remotely

piloted vehicle is not equipped with

radar sensors to provide data

describing relative motion, the

astronaut has to rely entirely on

visual inputs to perform his functions.

Such maneuvers are impossible without

the aid of adequate visual cues.

Adequate visual coverage, the field of

view provided, is also of paramount

importance. The visual coverage not

only provides guidance for the

particular maneuvers, it also dictates

the feasibility of the maneuvers

themselves. Due to the complex

geometrical shapes of the vehicles and

their attachments, together with the

number of moving parts involved,

collisions between parts can happen

quite inadvertently. These collisions

may go unchecked if visual coverage is

not available to give immediate

feedback.

A third aspect of the problem is

providing all the pertinent views to

all participants in the simulation. In

scenarios involving the Space Shuttle

and Space Station working in concert

there may be upwards of ten window

Figure i - Space Station Freedom / Space Shuttle
Docking

Figure 2 - Space Station Freedom / Space Shuttle

Payload Hand-Off
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views and seven closed-circuit-
television (CCTV)monitors in use by
the astronauts during one simulation.

Thus, the issues to be addressed in
providing visual systemsto man-in-the-
loop simulations are : i). providing
real wQrld representation for window
and CCTV views, 2). providing adequate

visual coverage (field of view) to

adequately complete the task, 3).

providing as many views to as many

participants as possible during the

simulation.

LABORATORY BACKGROUND

The Systems Engineering Simulator (SES)

located at the Lyndon B. Johnson Space

Center in Houston, Texas, has

successfully addressed these issues in

the development of its simulator

complex which provides real time man-

in-the-loop simulations for the

National Space Transportation System

Space Shuttle program and the Space

Station Freedom program. The SES

provides two crew stations for manned

operation of the vehicles in the

simulation. A Space Station Freedom

workstation mockup is provided and a

replication of the Space Shuttle aft

flight deck is provided.

There are six windows and five camera

monitors in the Space Station Freedom

control mockup (Figure 3) and the Space

Shuttle aft cockpit mockup has four

windows and two camera monitors (Figure

4). Each window view is a virtual image

projection of a two-dimensional scene

projected by a television monitor. The

virtual image will give the window view

a three-dimensional perspective. Camera

views are provided with pan/tilt/zoom

capabilities, and the scene graphics

are projected onto television monitors.

This arrangement of different

capabilities between window eye points

and camera eye points is the design to

map the visual simulation to the real

world where out-the-window views are

three-dimensional and camera views are

two-dimensional.

The laboratory has three different

scene generators providing a total of

eleven channels of video signal. An

Evans & Sutherland CT-6 visual

generation system provides six

channels, an Evans & Sutherland CT-3

system provides two channels, and a

Redifusion Poly 2000e visual system

provides three channels of video

signal.

There are obviously more window and

camera views than the eleven channels

can support. A video distribution

system has been developed to handle the

video signal allocation and switching

in a time-sharing fashion to provide

video to windows and CCTVs as selected

by the simulation operators. The system

has two major components. A Scene

Select subsystem allows simulation

users to select which video channel is

to be displayed on which window or

CCTV. The other component is the Video

Distribution Rack (VDR) which is

responsible for routing the video

signals from the three scene systems to

the windows and CCTVs in the mockups.

Figure 3 - Space Station Freedom Control Mockup

__ . V-7 5_7/--/".._
mA.m u _ _

-.,_._ ._

Figure 4 - Space Shuttle Aft Cockpit Mockup
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VISUAL SUBSYSTEM Scene Devices

There are five major pieces of visual

scene software needed to provide the

visual simulations for the SES: Scene

Drive, CT3 Interface, Poly Interface,

CT6 Interface and the Scene Devices

Controller (Figure 5).

Scene Drive

This element provides the mathematics

between the simulation and the scene

systems. The Scene Drive takes inertial

state vectors of the vehicles, computes

the relative state vectors, and passes

them onto the scene system interfaces.

An equally important issue in the

visual simulation, besides the

positioning of the objects, is the

positioning of the eye points. Scene

Drive receives inputs that indicate

which eye points are currently selected

and whether pan/tilt/zoom has been

commanded for camera eye points.

Armed with the users' requests of

monitors and the availability of video

channels, the Scene Drive task

determines which scene system video

output channels should be routed to

which television monitors for display.

87-6

[SKI

The Scene Devices task is a background

task supporting the simulations. It

receives user requests for monitors

from the Scene Select hardware and

passes the requests to the Scene Drive

task. It then receives the VDR and

Scene Select commands from the Scene

Drive tasks and passes the commands to

the VDR hardware and Scene Select

hardware respectively for hardware

distribution of scene system outputs.

CT3, POLY & CT6 Interfaces

These three interface tasks receive

relative state vectors of vehicles, eye

points from the Scene Drive task, and

data from the other parts of the

simulation to drive the objects in the

visual scene. Each of the tasks is the

only link between the simulation and

the corresponding scene system.

COVERAGE

visual coverage is a major concern for

SES Crew Stations. The coverage for the

simulator is determined by the field-

of-view of the real-world windows.

Ideally, the simulator should provide

the exact field-of-view to the

astronaut as is available to him in the

actual vehicle. The Space Station

Freedom workstation creates an

interesting problem in that there is

almost a continual view across windows.

The SES has developed a rotating optics

system to fit around the Space Station

Freedom workstation to provide this

continual field of view (Figure 6). The

optics system can rotate in a vertical

manner to provide coverage overhead

when necessary. This rotating

capability allows the astronaut to

select his coverage as a function of

his interested area outside the

workstation.

....... |........

|_
l
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Figure 5 - Visual Subsystem Block Diagram

SUMMARY

The Systems Engineering Simulator has

addressed the major issues in providing

visual data to its real-time main-in-

the-loop simulations. Out-the-window

views and CCTV viewsare provided by

three scene systems to give the

astronauts their real-world views. To

expand the window coverage for the

Space Station Freedom workstation a

rotating optics system is used to

O_G|['4,'_L PAGE iS

OF POOR QUALITY
217



provide the widest field of view
possible. To provide video signals to
as manyviewpoints as possible, windows
and CCTVs, with a limited amount of

hardware, a video distribution system

has been developed to time-share the

video channels among viewpoints at the

selection of the simulation users.

These solutions have provided the

visual simulation facility for real-

time man-in-the_loop simulations for

the NASA space program.

Figure 6 - Rotating Optics System
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ABSTRACT

The Systems Engineering Simulator (SES)

houses a variety of real-time computer

generated visual systems. The earliest

machine dates from the mid-1960's and is

one of the first real-time graphics

systems in the world. The latest

acquisition is the state-of-the-art

Evans and Sutherland CT6. Between the

span of time from the mid-1960's to the

late 1980's, tremendous strides have

been made in the real-time graphics
world. These strides include advances

in both software and hardware

engineering.

The purpose of this paper is to explore

the history of the development of these

real-time computer generated image

systems from the first machine to the

present. Hardware advances as well as

software algorithm changes are

presented. This history is not only

quite interesting but also provides us

with a perspective with which we can
look backward and forward.

ACRONYMS AND ABBREVIATIONS

CIG

CT3

CT6

EPU

ESG

JSC

MMU

Computer Image Generator

--- Continuous Tone Computer Image

Generator - third generation

--- Continuous Tone Computer Image

Generator - sixth generation

--- Edge Processing Unit

--- Electronic Scene Generator

--- Johnson Space Center

--- Manned Maneuvering Unit

NASA -- National Aeronautics and Space

Administration

OGU --- Object Generating Unit

OMV --- Orbital Maneuvering Vehicle

R520 -- Raytheon 520

SAIL -- Shuttle Avionics Integration

Laboratory

SEL --- Systems Engineering Laboratories

SES --- Systems Engineering Simulator

SGS --- Surface Generator Subsystem

TOU --- Timing and Output Unit

VCU --- Vector Calculating Unit

INTRODUCTION

In the twenty odd years between the

first real-time computer image generator

to the present, many strides have taken

place to provide realistic, full color,

three-dimensional displays for use in

many areas in the simulation community.

NASA/JSC is rare in that it contains a

snap-shot of this development

approximately every ten years.

From the first of its kind to the

current, real-time computer image

generators provide the necessary visual

displays to support the increasingly

heavy demands placed on the Systems

Engineering Simulator (SES). This paper

explores the history of the scene

generators which existed and still exist
in the SES.

The hardware configuration and new

technology of each graphics system is

explained. The salient features and

innovations of each system as they were

introduced to the SES is explored.

Several advances in the theory of

database modeling have evolved

throughout the years and real-time

programming has changed from minimal to

extensive.

Due to historical carryover,

Electronic Scene Generator

Computer Image Generator (CIG)

used interchangeably.

the terms

(ESG) and

will be

SES -- SYSTEMS ENGINEERING SIMULATOR

The Systems Engineering Simulator (SES),

formerly the Shuttle Engineering

Simulator, has been in continuous

operation since the programs conception

in 1968. The SES supports real-time

man-in-the-loop computerized engineering

simulation for the Shuttle, space

station, and other space related

programs and projects.
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The two main areas of
utilizing Electronic Scene
(ESG)are entry and on-orbit.

operation
Generators

Theentry simulation is hosted by a
cyber 840. The orbiter forward cockpit

mockup is located in the East High Bay

of Building 16.

On-orbit simulation is accomplished with

the use of five SEL 32/8780 supermini

digital computers and four SEL 32/75

digital computers. Mockups include an

orbiter aft station, MMU station, and a

cupola station. The cupola is the

operations station for the space
station. All of these mockups reside in

Building 16. On-orbit operations which

are supported include space station

docking/berthing, payload

handling/deployment, MMU operations, and

OMV studies to mention a few.

NASA I -- THE ORIGINAL SCENE GENERATOR

"And, in the beginning, there

was texture."

NASA/JSC was instrumental in bringing to

fruition the concept of real-time

computer generated images. In the time

before the mid-1960's, the

out-the-window visual images were

generated by model boards: large,

scaled replicas of the simulation

terrain over which a closed circuit

television camera traversed. These

model boards were built specifically for

the purpose at hand and not easily

modifiable.

A new concept emerged in the early

1960's. Although rather idealized, the

scenes produced by computers could be

generated in real time to satisfy the

requirements to provide scenes for

out-the-window displays. In August,

1964, NASA at the Manned Space Center

installed the first such computer

device. The dawn of real-time computer

generated images began with the "Visual

Contact Analog: Three-View Interim

Space-Flight Simulator" build by General

Electric.

AS intimated above, this computer system

produced three views. These views

consisted of an unbounded textured

planar surface for the ground. This

special purpose computer, the Surface

Generator System, calculated the

perspective transformation of a surface

texture. The optical system displayed

the resulting pictures so that the

environment appeared distant to the

observer.

There were a few interesting details to

be discovered about this system. Due to

the state of the digital art at that

time, several problems were solved with

analog methods. The textured surface

was computed in digital form without a

roll angle. This made the algorithm

simpler and roll was accomplished in the

circular television monitor by

electronically rolling the raster.

Precise nonlinear sweeps were generated

by the display unit to compensate for

optical distortions. To avoid

disturbing moire patterns, fine detail

was gradually faded out of the picture

with analog circuitry.

The entire computer system consisted of

six pipelined processors built with

pre-TTL equipment: Computer Control

Corporation (3C) circuitry cards

containing discrete components.

Screaming along at 5 MHz, the displays

were generated at 30 frames a second.

This corresponds to the current American

commercial standard.

AS in all computer image generators, the

first processor unit is the unit with

the highest programmability. The first

unit of the Surface Generator System,

the Program Control Unit, contained 512

48-bit words and had a memory access

time of 5 microseconds.

This machine served the Guidance and

Control Division for several years.

NASA II -- THREE DIMENSIONAL CAPABILITY

In February, 1968, modifications were

made to the Interim Visual Space Flight

Simulator and a large complement of

equipment was added.

An innovation occurred in the field of

computer generated images.

Three-dimensional objects were added to
the textured surface. In this time

frame, the Manned Space Center was

heavily involved with moon landings.

The additional capability provided the

simulation with idealized forms of lunar

mountains and craters as well as the

traditional realistic landing fields.

The new system consisted

following components:

of the

i. A Raytheon 520 (R520) general

purpose computer. Flexibility was

introduced by linking a general purpose

computer to a set of special purpose

computers. Although minimal by modern

standards, the memory capacity was 8096

24-bit words core memory and 256 24-bit

words of high speed memory. This

concept formed the basis of flexibility

in the succeeding generations of

real-time visual systems.

2. A Vector Calculating Unit (VCU).

This special purpose computer deviated

from the classical Von Neumann computer

architecture. It contained a 4096
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24-bit word program memory unit and

three sets of 2048 30-bit word data

memory units corresponding to the x, Y,

and Z components of the Cartesian

coordinate system. The data memory

units can be accessed in parallel,

enabling dot and cross product

calculations to be made quickly.

3. A set to two Object Generating Units

(OGU). Each unit was capable of working

on twenty objects made up of eighty

faces and described by a maximum of 120

edges. For each edge of the

environment, one circuit board was

required.

4. A Timing and Output Unit (TOU).

This unit performed three functions. It

generated the master timing signals for

the entire system. The TOU served as a

mixing and distribution point for the

video outputs from the two OGU's and

routed data from the VCU to the OGU's,

SGS, and displays. Test patterns were

generated in the TOU for aligning and

trouble shooting the system.

The Surface Generating Subsystem (which

was the Visual Three-View Space-Flight

Simulator) was modified to allow its

operations at 20 frames a second. The

NASA II system operated at a slower rate

due to the constraints imposed on it by
the R520 and VCU.

Of interest here is the fact that the

objects which were generated came from a

catalog of two-dimensional polygons and

three-dimensional objects. Each OGU had

the capability of generating one

decahedron, one octahedron, two

hexahedrons, and four tetrahedrons as

well as two dodecagons, three octagons,

four hexagons, three quadrilaterals, and

two triangles. The maximum capability

of 120 edges per OGU could not be

exceeded. The combined capacity of the

two OGU's was 240 edges.

The database designer had to create a

scene choosing objects and polygons from

a catalog of available objects and

polygons. The specification of vertices

for the objects and polygons followed

stringent rules. The concepts of

planarity and convexity were required

for each planar surface. Because object

topology was predefined, vertex

selection required a lot of

precalculation for irregular objects.

Selection of the objects and polygons

amounted to filling specific absolute

locations in the R520 memory. Color

selection followed a similar procedure.

The designer also had the choice of one

quadrilateral shadow polygon and one

beacon. The shadow polygon emulated the

shadow created by ones ownship. It

changed configuration in response of the

vehicles attitude with respect to the

surface and an imaginery sun. The one

beacon was a two element by one line

pair dot. It had the capability of

flashing and the period was

programmable.

The real-time programming consisted

mainly of calling the subroutines which

transformed objects and polygons in the

correct order. At this point in time,

there was not a clear distinction

between database design and real-time

programming. The two concepts were

closely intertwined.

The NASA II system, therefore, presented

an environment consisting of

three-dimensional objects on a two

dimensional textured surface.

NASA III -- A BETTER WAY

In November, 1971, a major innovation

was incorporated into the then current

visual system. The two OGU's with its

combined capacity of 240 edges was

replaced with an Edge Processing Unit

(EPU) which increased the edge

capability to 320 edges. The theory of

a fixed set of objects and polygons was

superseded with a more general approach

of just polygons. Groups of polygons

were gathered to form three-dimensional

objects.

A new concept was also introduced.

Edges could now be shared between an

object or among objects which did not

move relative to each other. This

provided an addition edge capacity

capability. For example, a cube has six

sides and each side has four edges.

With this method, a cube could be

described as six sides with twelve

shared edges rather than six sides with

four edges each for a total of 24.

With the added flexibility that this new

system brought, a need for programs to

generate databases was required. The

first database compiler was written by

Lockheed at the NASA Manned Spacecraft

Center. Because the program was written

in an early version of Fortran, the

syntax was necessarily field sensitive.

Things had to be in the right column.

The database designer specified clusters

by grouping polygons. He specified

polygons by grouping vertices. Clusters

had to follow some rigid constraints.

NASA III used the idea of separating

planes. Clusters were separated from

each other by invisible, infinite planes

called nodes. Modules were groups of

clusters which did not move relative to

each other. Each polygon was given an

attribute such as color, back-face

generation, and shadow or beacon

generation. Given the capacity of the

machine, the number of edges per polygon

was completely arbitrary. One of the
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test patterns which existed on the

machine has sixteen polygons of twenty

edges each.

The real-time program, which resided in

the R520 and the VCU, was written by

General Electric. It was an upgraded

version of the one which resided in the

R520 in NASA II but the new algorithm

made the program much less complex and

easier to manage.

Programming of the real-time software

was rather trivial. The program was

mainly driven by the database

environment. It required little

modification for each new environment.

The environment consisted mainly of two

independent coordinate systems which

could contain an eyepoint or modules,

one coordinate system which could

contain only an eyepoint, and the ever

present textured surface.

With the advent of the CT3, described

below, the NASA III system was renamed

the Electronic Scene Generator #I (ESG

#i).

CT3 -- A MAJOR STEP

A major step in the evolution of

real-time computer generated image

systems was made in November, 1976. The

CT3 made by Evans and Sutherland was

introduced to the SES. This system had

many new attributes which deserve

mentioning. This system is currently

employed to a great extent in the SES

laboratory.

The CT3 consists of three general

purpose computers of the PDP-II series,

a visual pipeline, and a collision

detection pipeline.

A central PDP-II/40, called the HOST, is

interfaced to the simulation laboratory.

The HOST interfaces to the visual system

and the collision detection system. The

main purpose of this machine is to

gather the data from the simulation,

format the data, and send the results to

the other subsystems.

The visual subsystem is driven by a

PDP-II/40. It is connected to a visual

pipeline containing 10 programmable

special purpose processors. Two

independent channels of visual images

are produced. The total capacity of the

visual system is 900 polygons.

A separate collision detection system
allowed the simulation to detect the

intersection of impenetrable objects.

This system consisted of a PDP-II/45 as

well as a collision detection pipeline

containing two programmable special

purpose processors.

The frame rate of this system was 25 Hz.

This corresponds to the European

commercial standard. Although ESG #i

was operating at 20 Hz, no problem was

presented. CT3 was used for on-orbit

studies and ESG #i was not.

The visual system included many new

features which are described below.

Anti-aliasing and edge smoothing were

added to improve picture quality.

Spatial filtering was used as the

algorithm.

Directional illumination was introduced

to provide an illusion of sun direction,

intensity, and environmental depth.

Smooth-shaded polygons simulated round

or complex shaped objects. The Gouraud

shading algorithm was implemented in

hardware using extremely fast ECL

circuitry.

Hidden surface removal by range priority

was done in hardware as well. This

eliminated the necessity for separating

planes.

A separate modeling system was delivered

which was used to create and analyze

databases. This system consists of a

calligraphic display system and a

general purpose computer, PDP-II/40.

Software packages aid the designer in

producing new databases. The databases

are viewed in wireframe on the display

system.

This is the first time that the database

modeling was implemented on a system

other than the visual system. Due to

the extremely heavy usage of the CT3 in

the simulation laboratory, a separate

modeling station is necessary.

A new language was developed for

database modeling. The new compiler

set, MEDUSA for the visual system and

COLIDE for the collision detection

system, offers the designer a capability

and flexibility heretofore unknown. In

the process of constructing an

environment, the designer defines and

names points. Subsequently, he defines

polygons in terms of these points and

adds attributes such as color and

reflectivity. With this innovation, the

database design becomes much more like

programming rather than filling out

specification requirements.

Another language set, VIS for the visual

system, CDS for the collision detection

system, and HOST for the host machine,

was developed for the real-time

programmer. Symbolic parameter areas

are defined by the programmer and

transformation sequences are specified

to meet the simulation requirements.

Again, the real-time programmer is more

of a programmer rather than someone who
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allows the data to dictate the real-time

configuration. Currently, two versions
of the HOST software exists. HSTSES

interfaces to SES and HSTSTS interfaces

to SAIL. At the present time, CT3 is in

use at least 16 hours a day supporting

on-orbit studies in the SES.

ESG #I -- A NEW LEASE ON LIFE

Returning to ESG #i (alias NASA III),

the Raytheon 520 was more and more

difficult to maintain and the SGS was

even more difficult to maintain. During

the early 1980's, this author's project

was to replace the R520 with a more

modern Systems Electronic Laboratory

(SEL) 32/55. During this project, the

SGS was removed from the system as well

as some other parts of old ESG #i. The

remaining units are the VCU, TOU, and

EPU. The display systems were reworked.

This effectively removed the texture

capability from the system.

The frame update rate of ESG #i was not

changed. To have done so would have

required major hardware modifications.

Therefore, the frame update rate was

retained at 20 Hz.

Along with the hardware changes, a new

set of software packages had to be

written. Rather than follow the

original design for database modeling

and real-time application software, it

was desirable to model the software

after CT3. In this effort, the database

modeling software closely approximates

that of CT3, given the different

hardware algorithms between the two

machines. In addition, the real-time

software approximates the real-time

software of CT3. The desired effect was

the capability of a database designer or

real-time programmer to move between the

two machines with very little effort.

The database modeling software, ENCOM,

was designed to emulate the database

modeling software which exists on CT3.

A complete rework was undertaken so that

a programmer on CT3 could move to ESG #i

with minimal effort. The established

procedure of defining and naming points

followed by defining polygons in terms

of these points was introduced to ESG

#i.

The real-time software followed a

similar theory and procedure. The

real-time software on CT3 was deemed a

standard and the real-time software on

ESG #i was designed to match as closely

as possible. Currently, three versions

exist. VISUAL interfaces to the SES,

VISSTS interfaces to SAIL, and VIS is a

standalone version used for local

applications and development.

As of this writing, ESG #i is actively

supporting entry simulation. A set of

13 entry scenes are available. Due to

its age, it is difficult to maintain and

some of the electronic components are

not obtainable. There is a project

underway to retire it and replace it

with a more modern computer image

generator.

POLY 2000 -- A MEDIUM RESOLUTION, LOW

COST APPROACH

A POLY 2000 built by GTI, Incorporated

(GTI) was purchased in October, 1985.

It was planned to add three low

resolution channels to the complement

which existed in SES at that time.

However, the software and hardware

theory was radically different.

The digital technology had advanced so

greatly during this period in time that

the POLY 2000 could accomplish real-time

computer generated images using

micro-coded, high-speed bit slice

processors.

The POLY 2000 at that time was in its

infancy. It did not have anti-aliasing

or smooth shading. It did have diffuse

reflectivity which gave the impression

of a sun direction. Alphanumeric

characters could be overlaid on the

scene.

The POLY 2000 consisted of a general

purpose computer and a set of special

purpose bit-slice processors. The

general purpose computer, the Alcyon,

was used in database development as well

as generating load modules for the POLY

2000 proper. The first major processor

was the System Control Module (SCM).

When the system was connected to the

simulation, data was sent directly to

the SCM and the Alcyon was not used.

This left the Alcyon free to be used in

other capacities.

Special requirements were insisted upon.

The frame update rate was set at 25 Hz

to match that of CT3. Multiple channels

were requited. The vendor produced a

system with three independent channels.

Database modeling was done on the Alcyon

and the binary object files were stored

on its disk. When needed, the object

modules were downloaded to the SCM. The

database compilers, polyi21 and polyd2D,

were not compatible with any of the

database modeling software which existed

in the SES.

The real-time programs were written in C

on the Alcyon and, also, downloaded when

required. No special language was

implemented; all special functions were

included in a library.

These concepts were radically different

than the ones established on ESG #i and

CT3. Lockheed personnel undertook the
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effort to write a set of software

packages which would more closely

emulate the concepts of the other

graphics systems. These included the

database compiler (POLYS) and the

real-time support software packages

known as the linker (LOADER), and the

loader (LOAD). The syntax of the

language was modeled after those

commands found in the software of the

other systems.

POLY 2000e -- AN ENHANCED VERSION

Given a few years, GTI enhanced the POLY
2000 to include additional features.

Their new POLY 2000e provided the

following enhancements:

i. Smooth-shading - Gouraud

shading was added to the flat shaded and

fixed shaded polygons already in the

system.

2. Anti-aliasing - Sub-pixel

averaging was used as the algorithm for

curing the jaggies.

3. Transparency - Eight levels

of polygon transparency was incorporated

into the system.

4. Depth fogging - Gradual

dissolution to the background provided

for fog and haze.

Essentially, the enhanced system was an

entirely new system. New algorithms and

hardware were exchanged for the older

system. The three channels operating at

25 Hz were retained. The general

purpose computer, the Alcyon, was also
retained.

Because the hardware and software

theories were changed, the custom-made

compilers had to be changed. Extensive

effort was employed to upgrade the

compilers to match the new system

without having to rework all the

previous database and applications
software.

The three channels of the POLY 2000e are

currently supporting on-orbit studies in

the SES.

CT6 -- A PRIDE AND JOY

As of this writing, an Evans and

Sutherland CT6 is in the process of

being integrated into the SES

laboratory. AS with the advent of CT3,

major steps in computer graphics were
introduced to the SES.

The general purpose computer of the CT6

is a Gould Concept 32/67. The special

purpose computers are still arranged in

a pipeline fashion but there are fewer

major components doing much more. The

configuration of the pipeline allows

channelization to be performed early in

the processing.

The current system has six independent

channels of high resolution, high

quality images. The system is capable

of processing thousands of polygons and

each channel can display up to 1500

polygons. Compared to the hundreds in

the other systems, the increased

capacity is impressive.

Not all the database need reside in

active memory. Parts of the database

which are potentially visible reside in

memory while the rest resides on disk.

When those objects not in memory become

potentially visible, they are paged in

from disk to memory. This provides a

mechanism which essentially expands the

potentially visible database many fold.

Texture returns. Not only ground

texture but polygonal texture is made

available. Any polygon regardless of

orientation can have texture. Many

texture patterns are available in the

system. Texture can be produced by

closed form equations or

photographically derived.

Database development is now necessarily

more complex. Database modeling is done

on a MicroVax II. Not just one software

package is enough. Several database

modeling software packages are provided

not only to develop databases but also

to display the resulting databases on a

color calligraphic display device, the

PS330. Database development includes

object and surface production

capability. The main database compiler,

DBC, deals with objects, polygons, and

points. A separate linker, LNK, is used

to join the intermediate binary object

files. The surface feature editor, SFE,

assists in creating large terrains

principally used in landing scenarios.

Several display packages are included

such as the CT simulator, CTS, and the

graphics editor, GRE.

Complexity also manifests itself in the
real-time software. The increased

memory and speed provided by the Gould

Concept 32/67 also provides a wealth of

capabilities for the real-time system.

Because the Gould Concept 32/67 is a

dual CPU system, the real-time tasks

have been divided to optimize this
feature. The user interface to the

real-time process, RTS, allows the user

a wide variety of commands and

capability to control and configure the

system.

As of this writing, the CT6 is in the

last stages of integration into the SES.

The database designers are working hard

to supplement the databases already

delivered by Evans and Sutherland. The

SES is looking forward to the time when
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the CT6 will be brought on-line and

support the simulation studies.

CONCLUSION

This paper has explored the history of

the computer image generator as they
existed and still exist in the SES.

Many advances have been made in the

hardware, taking advantage of the

current state-of-the-art circuitry

available at the time. From the

discrete components to the first

integrated circuits to the very large

scale integrated devices, the real-time

graphics industry has tried to use

everything at its disposal to create the

best images available. The theory on

how to best utilize the hardware

advances has also changed toward

flexibility, programmability, and

manageability.

Database design has grown from data

specifications to large and complex

programs. As the complexity in

databases increased, the complexity in

the database software increased.

Real-time software has changed radically

over the duration of the real-time

computer image generator. In the early

stages, the simulation visual system was

driven mainly by the data which it

received. As more and more powerful

front-end general purpose computers were

available, the real-time programmer was

able to enjoy more and more flexibility

in the control of the visual system.
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ABSTRACT

The demand for realistic, high fidelity, computer image

generation systems to support space simulation is well
established. However, as the number and diversity of space

applications increase, the complexity and cost of computer

image generation systems also increase. One strategy used
to harmonize cost with varied requirements is establishment

of a reconfigurable image generation system that can be
adapted rapidly and easily to meet new and changing

requirements.

This paper examines the reconfigurability strategy through
the life cycle of system conception, specification, design,
implementation, operation, and support for high fidelity

computer image generation systems. The discussion is
limited to those issues directly associated with

reconfigurability and adaptability of a specialized scene

generation system in a multi-faceted space applications
environment. Examples and insights gained through the
recent development and installation of the Improved Multi-
function Scene Generation System at Johnson Space Center,

Systems Engineering Simulator are reviewed and compared
with current simulator industry practices.

The results are clear; the strategy of reconfigurability applied

to space simulation requirements provides a viable path to
supporting diverse applications with an adaptable computer
image generation system.

INTRODUCTION

One of the key problems facing high fidelity visual
simulation is balancing fidelity and realism with cost and

versatility. Government and Industry Aerospace
Engineering and Training disciplines have typically required
the highest fidelity visual imagery to maximize research and

training objectives (t) (2) (3). In order to achieve the greatest
measure of fidelity for the specified objectives, visual system
contractors review specifications and configure specific

systems to best meet the particular requirements of a given
procurement. The resultant systems are tailored for specific

engineering or training applications.

As the pace and diversity of space missions increase, and the
requirements of space station construction and deployment

come into sharper focus, the demands placed upon
engineering and training visual simulation will escalate. In

their 1987 IEEE paper(4) Robert H. St. John, Gerard J.

Moorman, and Blaine W. Brown concluded "Simulation
was important in the design and verification of the Space
Shuttle, and it will continue to be instrumental in supporting

changes and improvements to Space Shuttle hardware and
software as well as to the mission design and verification

process." Ankur R. Hajare, in a paper presented at the 10th
Interservice/Industry Training Systems Conference (5),

reviewed many of the requirements for the Space Station
Training Facility. Continuing evidence of this need is

underscored by the pending Shuttle Mission Training
Facility visu',:d system upgrade.

One strategy for harmonizing requirements with cost, while

maintaining the highest level of visual fidelity, is to design
and construct the primary image generation system
components with versatility as a prerequisite. This

versatility, or hereafter referred to as reconfigurability,
applies to hardware, software, and data base elements, and
permits timely reconfiguration of one or more of the system
elements to meet a wide set of well defined requirements as
well as new and/or additional requirements. This paper
defines and addresses the significance of reconfigurability

within the framework of the Improved Multi-function Scene
Generation System recently installed at Johnson Space
Center, Systems Engineering Simulator.

DEFINITION OF RECONFIGURABILITY

Reconfigurability, for the purposes of this paper, is defined
as the capability to reorganize one or more components of an

image generation system, including hardware, software, and
data base components, to meet new, different, and/or

expanded requirements. The methodology applied to
identifying candidate components for reconfiguration is akin
to the life cycle and development methodologies espoused by

Dr. Roger Pressman(6L He indicates "system definition is

the first step of the plannin.g phase and an element of the
computer system engmeenng process . . . attention is
focused on the system as a whole. Functions are allocated to
hardware, software, and other system elements based on a

preliminary understanding of requirements."
Reconfigurability is a key additional requirement to be taken
into consideration during the system definition phase. By

identifying potential contributors to reconfigurability during
the system definition phase, effort can be made to
modularize and further refine these elements during the

design and development phases. This, in turn, permits a
smooth integration and implementation of these malleable

components.

FUNDAMENTAL COMPONENTS OF AN IMAGE
GENERATION SYSTEM

Before proceeding to identify specific image generation

system components, it is necessary to review the
fundamental components of an image generation system and
provide some details about the Improved Multi-function
Scene Generation System. (For a thorough review of image
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generationandprocessingtheoryseereferencesand
suggestedreading(7)(s)).

Astheblockdiagramin Figure 1 illustrates, the modeling
system is the initial functional component of an image

generation system. A characteristic modeling system
hardware configuration includes a graphical workstation, a
mini computer with mass storage and communication
capability, and associated peripherals. The software

components include a general purpose operating system
complete with languages, text editors, and network
capabilities, as well as the special purpose data base
modeling software.

MODELING
SYSTEM

IMAGE

GENERATOR

DISPLAY
DEVICE

HOST
COMPUTER

FIGURE 1
FUNDAMENTAL COMPONENTS OF AN IMAGE

GENERATION SYSTEM

The modeling system is typically used in an off-line mode
from the remainder of the image generation system. It
facilitates the mathematical definition and construction of

data base elements and organizes these elements into a visual
data base (please note for the context of this paper, visual
data base implies support of out-the-window or Closed

Circuit Television (CCTV) views. This does not necessarily
preclude other views including, but not limited to, infrared
sensors or radar. For an introduction into the issues of data

base correlation see references and suggested reading(9)). In

addition to maintaining the mathematical representation of
models and environment, the visual data base provides the
framework for rapid and efficient access by the image

generator.

The image generator (IG) is an highly specialized computer
system typically consisting of a general purpose mini

computer combined with multiple cabinets of custom image
generation hardware. The hardware is controlled through a
custom real time software (RTS) package that monitors IG
performance as well as managing communication with the
host computer.

The host computer maintains the mathematical model of the

simulation, monitors operator input, and transmits position,
attitude, and environmental control information to the image

generator. The image generator, in turn, traverses the data
base framework and displays the appropriate imagery on the
display device.

THE IMPROVED MULTI-FUNCTION SCENE
GENERATION SYSTEM

As the name implies, the Improved Multi-function Scene
Generation System (IMSGS), an Evans & Sutherland CT6

System, installed at Johnson Space Center, Systems
Engineering Simulator (SES) is dedicated to supporting
many different aspects of high fidelity, large scale space

simulations. The contract called for an image generation
system that could integrate with existing SES simulation
capabilities and augment the quality and quantity of visual

imagery. Among other tasks, SES currently supports
orbiter operational procedures development and testing,
remote manipulator operations, payload handling, flight

support and training on shuttle to proximity operations,
docking and berthing techniques development, and

conceptual development for the space station(10).

At the time of the CT6 installation, May 1988, the SES
facilities included several networked Gould 32/87 host

computer systems supporting an orbiter aft cockpit mock-up,
an orbiter forward cockpit mock-up, a space station cupola
mock-up, and a manned maneuvering unit (MMU) mock-up.
The video feeding each of these mock-ups was derived from

one of three image generation systems, each supplying one,
or at most three, channels of imagery. The imagery was
transmitted to the mock-ups through a sophisticated scene
selection and video distribution system permitting allocation

and assignment of an individual image generator channel to a
specific view.

The IMSGS, as depicted in Figure 2, incorporates an Evans

& Sutherland CT6 IG complete with a Gould 32/6781 mini
computer. It is supplemented by a Digital Equipment
Corporation MicroVAX based Modeling System complete
with an Evans & Sutherland PS330 graphical workstation.
The system also includes a maintenance and operation station

and video switching and CCTV video post processing
capabilities.

....... -I
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The CT6 IG hardware supplies 6 channels of imagery. Each

channel supports full texture capability and can display a
standard capacity of 1500 polygons at 50 Hertz operation.
Five of the six channels have a normal resolution capability
of a half a million active pixels, while the sixth channel basic

configuration supports three quarters of a million pixels.
During terrestrial operations the hardware supports two fully
independent eyepoints with up to six fields of view shared
between the two eyepoints. During orbital operations each
of the six hardware channels can function as a fully

independent, six degree of freedom, eyepoint. One of the
six channels is equipped with non-linear image mapping

(NLIM) permitting pre-distortion of an image to correct for
display distortions.

Acting as a front end for the CT6 IG, a Gould 32/6781
general purpose computer (GPC) system is networked to the
SES host computer system and the IMSGS modeling

system. With over nine hundred megabytes of disk storage,
the GPC provides a repository for the visual data bases and
sufficient storage space for operating system and application
software needs.

During active simulations the GPC communicates with the
SES host computer system at 80 millisecond intervals for
position and attitude of the dynamic models as well as
environmental data such as scene illumination level, sun

angle, field of view, CCTV camera pan and tilt angles, and
other control parameters. This information is transmitted to
the IG for real time display.

When active simulations are not in session, the GPC

supports stand alone simulations, diagnostic and
maintenance activities on the IG, and general purpose
software development. The GPC is equipped with the
Gould MPX operating system, a custom real time software

package supporting both host controlled and stand alone IG
activity, and a comprehensive diagnostics software package
to assist in fault isolation.

Assisting in both host controlled and stand alone modes, the
IMSGS maintenance and operation station provides an

interactive control console, or flybox, for monitoring IG
activity, flying through data bases in stand alone mode, and

for running diagnostics. The station houses dedicated
monitors for each of the six image generator channels

permitting simultaneous view of all image generator activity.
There are also two dedicated CCTV monitors, one

switchable CCTV monitor, and one switchable general
purpose monitor.

The video supporting the maintenance and operation station
is supplied via a software controlled video switching system.
The video switching system controls distribution of video

from the IG to the maintenance and operator station,
cockpits, or to the video post processing hardware. The
video post processing hardware can optionally convert RGB
component video to PAL-I composite video for CCTV
display, mix two channels of imagery for split screen
CCTV, and overlay CCTV camera identification, pan angle,

tilt angle, and camera temperature characters on the video for
CCTV display.

The IMSGS modeling system supports definition,
construction, modification, and display of CT6 visual data
bases in an off-line mode. The modeling software includes

the capability for creating new data bases, altering existing
data bases, generating texture maps, automatic terrain
generation from Defense Mapping Agency Terrain Elevation
Data, and evaluation of IG performance through the use of a

CT6 software simulator. The modeling system is connected
to the GPC via an Ethernet interface, facilitating transmission

of completed data bases.

A total of four operational data bases are supplied with the
IMSGS. The first three data bases are orbital data bases

containing the following common components: an earth
model, a star field with 1,655 stars modeled with correct
relative magnitudes and locations, a sun model, a moon

model, and a highly detailed orbiter model.

In addition to the common elements, the first orbital data
base also contains a detailed model of the Tethered Satellite

Subsystem (TSS) complete with a pallet and satellite tower
resting in the orbiter payload bay, and the satellite.

The second orbital data base contains a detailed and

articulated model of the Remote Manipulator System (RMS)
as well as a detailed model of the Hubble Space Telescope.

The telescope model is visible in both stowed and deployed
orientations.

The third orbital data base contains the detailed model of the

RMS, a detailed model of the MB-9 version of the Space
Station, a generic payload, and the Mobile Service Center

(MSC) complete with a Mobile Remote Manipulator System
(MRMS).

The fourth data base, a terrestrial data base, is the southern

California region with a detailed representation of Edwards

Air Force Base. The data base is 1,244 nautical miles by
1,244 nautical miles. The 121 nautical mile by 121 nautical
mile terrain region centered about Edwards is map
correlatable. Terrain elevation information was extracted

from Defense Mapping Agency (DMA) Digital Terrain
Elevation Data (DTED). In addition to the highly detailed
Edwards AFB area, the data base is equipped with a detailed
orbiter model and two detailed T-38 models.

Each of the aforementioned data bases make extensive use of

algorithmic and photo-derived texture to augment scene

fidelity and realism.

RECONFIGURABILITY, A CASE HISTORY

By the time the IMSGS contract was awarded in late

September of 1986 the NASA Engineers who had specified
the visual system requirements had already laid a great deal
of the ground work for a reconfigurable image generation

system. The requirements made clear the goal of
reconfigurability in a number of areas, such as " the update
rate shall be software selectable to run at 25, 30, 50, or 60

Hz" or "It is desirable that each channel be capable of having

... a range of 0.25 to 1.0 megapixels... ,,(it).

The team of engineers assigned to the program, working
with their NASA counterparts began the analysis, design,
and implementation of the requirements specified in the
contract. Some of the candidates for reconfigurability
surfaced immediately, such as being able to redistribute IG

hardware components to increase or decrease pixel
resolution or polygon capacity. Other candidates have come
to light further down stream such as the multi-tiered

occultation solution. Specific examples of reconfigurable
items are detailed in the following paragraphs, divided into
three broad categories: hardware, software, and data base.
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HARDWARE

There are numerous explicit requirements as well as

suggested goals in the IMSGS contract(1_) for hardware
reconfigurability. Some of the more obvious items such as

being able to increase memory or disk storage in the GPC or
modeling system, or being able to attach other peripherals to
the system, are not addressed in detail in this paper. The
items deemed uncommon, or atypical, for image generation

systems are detailed below.

Addressing the requirement for variable resolution, the CT6

image generator was equipped with the capability to share
display processor components between channels. This
permits increasing or decreasing the effective pixel resolution
from 262,000 active pixels to over 1,000,000 active pixels

by simply loading a different microcode initialization file.
This also implies a variable line rate and pixel rate capability.
The video line and pixel rates are programmable in ranges of
13 to 30 KHz and 10 to 40 MHz respectively, while the IG

is equipped to run at 25, 30, 50, or 60 Hz, with display
refresh rates of 50 or 60 Hz, thus allowing the use of a wide
range of displays. The maintenance and operation station is

equipped with multi-sync monitors able to match any line or
pixel rate generated by the IG. This capability has already
been put to use in the SES lab, matching the video

characteristics of the old Conrac 62601 displays, as well as
the newer XKD 1955 and SRL 2125 displays.

Just as display processor components can be shared between

channels to focus pixel resolution, the geometric processor
components can also be shared to focus polygon resolution.
This permits an increase in polygon capacity from the basic

1250 polygons per channel at 60 Hz, to over 2,200
polygons per channel at 50 Hz operation.

As indicated earlier, the SES lab supports several cockpits
each with a different number of displays. A sophisticated,
software driven, scene selection system is in place that

allows the assignment of any given image generation system
channel to a particular display device in a particular cockpit.
The IMSGS is required to interface with that system, and
does so with the use of a software controlled video matrix

switcher and video post processing capability. This video

switcher can be controlled through local software commands
within the IMSGS environment, or from the SES host

computer system. Any one of the six CT6 channels can be
routed through the switcher to provide an out-the-window,
CCTV, or MMU view, as required, to any of the mock-ups.

One of the requirements of the contract stated that at least one
IG channel be capable of supplying pre-distorted imagery at

varying pixel resolutions for use on an unspecified display
and/or projection system. This capability, known as non-
linear image mapping, or NLIM, allows a digital
mathematical correction of image components to ensure
proper geometric relationships when displayed on a non-
linear surface such as a dome. This capability works in

harmony with the aforementioned display processor sharing
to increase or decrease pixel resolution and is activated or
deactivated through a microcode control file.

SOFTWARE

The software components identified as reconfigurable items
were not as clearly defined at the requirements phase as the
hardware elements, nor as straight forward to design or
implement. There were the typical stated goals such as
modularity and maintaining reserve capacity for future

growth. There were also the not-so-obvious goals of
identification and reutilization of key individual modules to

help meet future requirements, or documenting critical
portions of code to such a degree that a novice software
engineer, with little or no image generation system

background, could effectively learn and modify the software
on an as needed basis. Through striving to meet these and
other stated and unstated goals there were several software

items that surfaced and were implemented as key
reconfigurable elements.

One of the key reconfigurable software elements is a portion
of the real time software package known as occultation

management. This software works in harmony with the data
base fixed priority relationships and existing real time object
range sorting algorithms to provide an additional tier of

object level occultation management. This is one of the areas
where the software has purposely been designed and
documented to facilitate a shopping cart approach to new

requirements. By using off-the-shelf key modules and,
where necessary, modifying modules that are simidar in
nature to the additional element(s), new capabilities can be
added in a timely and consistent manner.

In like manner, the host to GPC interface communications

software is designed to allow the timely addition, or
deletion, of simulation control parameters. In typical
simulation applications a fixed number of computer words
are reserved for data communications between the host

computer system and the image generation system, where
each word, byte, and bit have a known fixed location and

format in the data buffer. Changing the fixed format to add
or delete a parameter requires modification of all software
elements on both sides of the interface accessing that data

buffer. By contrast, the reconfigurable solution packetizes
or modularizes each control parameter by parameter type.
For example, all dynamic model position and attitude data is
identical in type and format, only the model identification
bits vary from model to model. Adding a new model to a

simulation is achieved by simply adding that packet of
information to the communications block. The block is fixed

length in nature, but the parameter packets can vary in any
number and sequence within the data block. When new

packet types are defined, an additional module is added to
the communications software to handle that packet type, with
no adjustments or adverse affect on other packet modules.

Similar to the concept of packetizing the control information

above, the diagnostics software is organized in a modular
fashion. Rather than writing a package of diagnostics
unique to each image generation system configuration, or
each backpanel within the image generation system, IMSGS
uses a general purpose diagnostics interpreter for fault

isolation within the IG. A diagnostic test is provided in the
interpretive language for each applicable card type in the
system. By interactively, or through a batch file, instructing

the interpreter which card, function, backpanel, channel, or
system to test, the appropriate diagnostics are executed
within the framework established by the operator. If a
particular situation demands a modification to a diagnostic,

the particular diagnostic can be edited with a normal text
editor to include the additional capability.

DATA BASE

As with the majority of hardware reconfigurable
components, most data base components were readily
identified through specific requirements in the contract. The

obvious items surfaced immediately and included such
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elements as: a general purpose shuttle model with variations
supporting attachment of an RMS, articulated doors and
solar panels, and a docking tunnel; an earth model complete

with cloud cover and an atmosphere ring; dynamic moon
and sun models; a star field containing a minimum of 100

specific stars with correct relative magnitudes and locations;

two specific payloads including the Tethered Satellite
Subsystem and the Hubble Space Telescope with variations
for stowed and deployed positions; and the MB-9 version of

the space station including articulated solar arrays, a highly
detailed primary docking port, and a dynamic mobile service
center with MRMS.

Comparable with the software items there were

reconfigurable data base components that surfaced during the
design and development phases as well. For example, one
generic CCTV model was created and referenced for each of

the shuttle, RMS, and MRMS CCTV locations; one grapple
fixture model was created and referenced for the two space
telescope grapple fixtures, the shuttle grapple fixture, and the
space station grapple fixture; one v-guide model was created

and referenced for each of the three locations in the payload
bay; one set of visual approach slope indicator (VASI)
lights, ball bar lights, and precision approach path indicator
(PAPI) lights were created and referenced for each applicable

runway at Edwards Air Force Base.

Each of these data base components, along with many

others, are available on the IMSGS modeling system to
allow modification of existing data bases or construct new
data bases in order to meet new or expanded requirements.
SES has already begun utilizing many of these components

to implement the Infrared Background Signature Survey
(IBSS) and Orbital Maneuvering Vehicle (OMV) simulations
not specified in the IMSGS contract.

CONCLUSION

Throughout the project life cycle there have been several key
items identified as reconfigurable in nature. Many of these
items were identified as specific requirements in the contract,
some of the items were already embodied in various
combinations of hardware, software, or data base, and some

of the items surfaced while in the design or development
phase. In all cases it was evident that if a particular item had
been anticipated and identified during either the requirement

or system definition phase, it was cheaper in terms of raw
cost and schedule to implement than if it was identified later
in the life cycle. Even when items were identified late in the

contract, it was still beneficial in the long run to either
include them as part of the contract, or recommend them for

inclusion at a later date. Also, in all cases, once a given
item was implemented, the savings in exercising the feature
in terms of time, fidelity, maintainability, and development
cost was obvious. The IMSGS is providing SES with a

truly reconfigurable scene generation system that can grow
and adapt with their new and changing requirements.

In an industry where change and redefinition are the norm,

reconfigurability provides an important implementation and
budget control strategy to assist in large scale space
simulations. In order to be most effective, the

reconfigurability strategy requires significant forethought

and planning at the earliest phases of definition. Anticipation
of expanded capabilities in performance, fidelity, and
implementations can greatly enhance the systems potential.

The results are clear, the strategy of reconfigurability applied
to space simulation requirements provide a viable path to
supporting diverse applications with an adaptable computer
image generation system.
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ABSTRACT

Among the Lyndon B. Johnson Space Center's respon-

sibilities for Space Station Freedom is the cupo-

la. Attached to the resource node, the cupola is

a windowed structure that will serve as the space

station's secondary control center, viewing.

From the cupola, operations involving the mobile

service center and orbital maneuvering vehicle

will be conducted.

The Systems Engineering Simulator (SES), located

in building 16, activated a real-time man-in-the-

loop cupola simulator in November 1987. The SES

cupola is an engineering tool with the flexibility

to evolve in both hardware and software as the

final cupola design matures. Two workstations are

simulated with closed-circuit television monitors,

rotational and translational hand controllers,

programmable display pushbuttons, and graphics

display with trackball and keyboard.

The displays and controls of the SES cupola are

driven by a Silicon Graphics Integrated Raster Im-

aging System (IRIS) 4D170 GT computer. Through

the use of an interactive display builder program

SES cupola display pages consisting of two dimen-

sional and three dimensional graphics are con-

structed. These display pages interact with the

SES via the IRIS real-time graphics interface.

This paper focuses on the real-time graphics in-

terface applications software developed on the
IRIS.

LIST OF

3D

CCTV

CDB

CDBRD

CDBNR

CPU

CRT

CVM

DLM

DLRD

DU

EXEC

HSD

HSDRD

ACRONYMS AND ABBREVIATIONS

3 dimensional

closed-circuit television

changed data block

CDB read (processor)

CDB write (processor)

central processing unit

cathode-ray tube

current value memory

display list memory

downlink read (processor)

display update (processor)

executive (task)

high speed data

HSD read (processor)

HSDNR

IND

INTF

IP

IP/DU

IRIS

MSC

OMV

OTW

PDP

RISC

SES

SW

SW/IND

SYSID

HSD write (processor)

indicator (processor)

interface (task)

input processor

IP and DU (task)

Integrated Raster Imaging System

mobile service center

orbital maneuvering vehicle

out-the-wlndow

programmable display pushbutton

reduced instruction set CPU

Systems Engineering Simulator

switch processor

SW and IND (task)

system identification

INTRODUCTION

The purpose of simulation is to provide an accu-

rate, economical, and most importantly safe means

of testing a product. The product may range from

a crewperson's expertise in performing a particu-

lar procedure to the procedure itself. Real-time

simulation implies that if an event in the real

world takes five seconds to transpire, the same

simulated event would also take five seconds.

Man-in-the-loop simulation places a human in the

simulation loop, reacting to the simulation com-

puters. For example, a crewperson initiates a

command to a system. The simulation computers

receive the command and perform the appropriate

response. The crewperson recognizes the response

and continues with a new command, completing the

simulation loop. Real-time man-in-the-loop simu-

lation provides an individual with the means of

performing a task in real time.

The Systems Engineering Simulator (SES) is located

in building 16 of the Lyndon B. Johnson Space Cen-

ter. The SES, depicted in Figure 1, is a real-

time man-in-the-loop simulation facility dedicated

to providing engineering support for the Space

Shuttle and Space Station Programs. SES support

covers a wide spectrum ranging from engineering

studies to procedures development and crew train-

ing.

The SES is composed of a computation facility,

scene generation computers, and four crew sta-

tions. The computation facility consists of slmu-
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Figure 1
System Engineering Simulator

latlon computers, mass storage units, data record-

ing, and development facilities. Three real-time

scene generation computers provide a combination

o_ up to eleven out-the-window (OTV) and closed-

circuit television (CCTV) views. The four crew

stations supported by the SES are the forward

shuttle cockpit, aft shuttle cockpit, manned ma-

neuvering unit, and space station cupola.

The space station cupola is the only windowed

structure to provide direct llne of sight viewing

from the space station. In its final phase I con-

figuration the space station will have two cupolas

attached to two of the space station nodes. The

cupola will serve as the secondary command contro_

station where much of the latter portion of phase

and most of phase II space station assembly will
be conducted. Operations of the space station mo-

bile service center (HSC) and orbital maneuvering
vehicle (OHV) will also be conducted from the cu-

pola.

The cupola crew station in the SES, referred to as

the SES cupola, is designed to be an engineering
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tool. With the final configuration not yet estab-

lished the SES cupola is designed to evolve in

both hardware and software configuration. The

wooden mockup models half of the cupola with a

viewing area for visitors or training personnel in

the rear. The crew station portion consists of

six OTW views and two side by side crew stations.

The next phase of the SES cupola includes many

hardware updates driven by McDonnell Douglas, the

primary contractor for the space station cupola.

This phase III SES cupola, due to be operational

in April 1989, will not only include a new physi-

cal shell, but also a reconfigured interior and a

new OTW optics system. As the design of the space

station cupola evolves into a final state, the SES

cupola configuration will evolve to match. It is

planned that the SES cupola will eventually evolve

into a real-tlme man-in-the-loop simulator with

actual flight hardware.

SgS CUPOLA BARDI/ARE

The SES cupola instrumentation and controls con-

sist of several integrated components used to sim-

ulate possible flight hardware for two crew sta-

tions (Figure 2). The heart of each crew station

is a Silicon Graphics Integrated Raster Imaging

System (IRIS) 4D/70 GT workstation class computer.

The IRIS has a reduced instruction set CPU (RISC)

architecture, and therefore processes approximate-

ly twelve million instructions per second. This

high speed provides quality graphics rendering on

top of applications software adequate for a real-

time simulation environment.

Figure 2
System Engineering Simulator Cupola

The IRIS drives and receives input commands from

four user interface components in the crew sta-

tion. First, the IRIS displays its graphics in-

formation on a 1024 raster line by 1280 pixel res-

olution 15" color monitor. The IRIS receives com-

mand input from a keyboard and three button track-

ball. Finally the IRIS drives the displays and

receives command input from three sets of four

programmable display pushbuttons (PDP). Rotation-

al and translational hand controllers are current-

ly interfaced to a separate general purpose compu-

ter supporting the SES cupola simulator rather

than to the IRIS.

A total of three IRIS units are used in the SES.

As stated previously, two are used for operations

inside the cupola simulator. The third IRIS is

used for development. All three IRIS units are

connected together through an ethernet interface.

One of the IRIS units inside the cupola, referred

to as the master IRIS, sends and receives data to

and from the SES simulation computers via a high

speed data (HSD) interface. The other two IRIS

units are referred to as slaves, but only because

they receive information from the SES simulation

computers via the master IRIS and ethernet. All

three IRIS units operate asynchronously from any

other computer.

CREW STATION DISPLAYS AND CONTROLS

The displays and controls in the SES cupola pro-

vide the user interface to the system a crewperson

wishes to access. The focus here is on how infor-

mation from some probable space station based com-

puter system is displayed to the crewperson as

well as how he can input commands to such a sys-

tem. Therefore, four devices in the crew station

will be discussed in detail: the display monitor,

three button trackball, keyboard, and PDPs.

As is common with many personal computers and

workstations today, the IRIS offers a window man-

agement system for flexibility and ease in dis-

playing information. Windowing systems allow the

user to display information in a specific portion

of the physical CRT screen space. The "window" of

information can then be moved from one position on

the screen to another. In fact, numerous windows

can be displayed on the screen at one time in an

overlapping fashion. A user can "pop" a window to

the foreground thus allowing all the information

in the window to be visible or "push" the window

behind all other currently visible windows. A

cursor on the screen is usually used to target a

specific window for one of the functions mentioned

above. The cursor can be moved about the screen

by a number of devices including the arrow keys on

a keyboard, a mouse unit, and a trackball.

The SES cupola crew station employs a three button

trackball instead of a mouse unit to position the

cursor on the 15" monitor. Response from astro-

nauts' use of the crew station dictated a prefer-

ence for the trackball. Restrictions were applied

to the IRIS window management system to simplify

the operation of the crew station. For example,

windows can be popped to the foreground but cannot

be pushed to the background, and windows cannot be
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reshaped. Furthermore, specific functions were

tied to the three buttons on the trackball. The

right button only pops windows. The middle button

only moves windows. The left button is used only

to select functions on the screen such as a

switch. By limiting the complexity of the window

management system through dedicated trackball but-

tons, the crewperson interfaces with an extremely

user friendly system with little chance of error

on the user's part.

The IRIS real-time applications software recog-

nizes three types of display windows: data, ban-

ner, and pop-up windows. Data windows are by far

the most common. They can be moved with the mid-

dle trackball button and popped with the right

trackball button. As the name implies data win-

dows display data, but they can also be used to

call up new windows as well as receive inputs.

Pop-up windows cannot be moved or popped to the

foreground. They are designed to emulate pull

down menus and thus are used only to call up new

windows. When a pop-up window is called up, the

next depression of the left trackball button is

expected to be inside the pop-up window. Other-

wise, the window is deleted. The banner window is

the most unique display window. The banner window

covers the entire screen and contains simulation

status and time information as well as the ability

to call up other windows. It cannot be moved, de-

leted, or popped to the foreground. The banner

window is brought up when the IRIS real-time ap-

plications software is initialized and remains

present during the entire simulation run with all

other display superimposed.

The keyboard in the current SES cupola crew sta-

tion has a very limited function. During simula-

tion operations there is a keyboard display type

available on some display windows. This display

type requires keyboard input from the crewperson

in the form of a floating point number. McDonnell

Douglas, as a future user of the SES cupola, has

requested increased use of the keyboard.

One of the thrusts behind the design of the space

station cupola is a reduction in the number of

hardware switches due to the lack of available

space. The use of twelve PDPs per crew station in

the SES cupola is one method of reaching this de-

sign goal. As the name implies PDPs can be pro-

grammed for numerous functions at different points

in time. For example a specific PDP may be pro-

grammed to pan a CCTV camera to the right when de-

pressed. Later the same PDP may be programmed to

trigger the snares in the MSC end effector to cap-

ture a target. In this way the total number of

hardware switches in the cupola can be signifi-

cantly reduced. Currently, in the SES cupola PDPs

are used to pan, tilt, and zoom CCTV cameras, as

well as control several MSC functions including:

turning off the master alarm, turning MSC brakes

on or off, driving individual MSC joints positive

or negative, and triggering the capture or release

of a target.

IRIS real-time applications software for the SES

cupola was flexibility. Past experience had prov-

en that hard coded display windows were difficult

to modify and maintain. Because the SES cupola is

an engineering simulator, the ability to modify

display windows with minimal turnaround time is

very important to many potential customers. It is

not unreasonable that they may wish to try several

different display window layouts. The IRIS real-

time applications software must be flexible enough

to change the display window layout as quickly as

possible. Therefore, all display windows, regard-

less of the type (data, pop-up, or banner), are

read from display data files.

The concept of the display file (Figure 3) is very

straight-forward. Each display file is construct-

ed with an off-line display builder program and

contains all the information needed to produce a

display window in the real-time applications soft-

ware. The information in the display file is or-

ganized into units referred to as display types.

Therefore, when a window is called up by the real-

time system, such as the banner window upon ini-

tialization, a specific display file is read, and

the display types in that file are used to draw

the window during operations.

There is a finite number of defined display types

that are recognizable to both the display builder

and the real-time applications software. However,

one of the major advantages to this method of con-

structing display windows is that new display

types can be added with minimal impact. Once a

display type is defined, construction and modifi-

cation of display files becomes almost a trivial

process due to the user friendly nature of the

display builder. Display types in general contain

the following information: an opcode to designate

the type, the number of words used to define the

display type, a system identification number

(SYSID) used for variable data related to the dis-

play type, and (x,y) coordinates to position the

display type in the display window. Beyond this

preliminary data, display type information becomes

more specific to the actual display type. A list

Header tl

Display Item

Di,p,ay.eraI w

Packets

F=-_cl- of- l.ist

Terminator

Display Item

Display File

31 ...... 24 23 ...... 16 15........ 8 7...........0

type length window ID

p:p-Lp banner 2D/3D font

window length

X origin Y odgin

X length Y length

Header Display Type

SES CUPOLA DISPLAY AND CONTROL MONITOR

One of the primary concepts in development of the

Figure 3
Display File and Header Display Type
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of currently available display types is provided

in Table I and Table II, and a more detailed de-

scription of each display type can be found in Ap-

pendix A.

Table I

2 Dimensional Display Types

Header Entry End of List Terminator

Integer Real

Long Float Hexadecimal

ASCII Message Static Text

Page Call Keyboard Input

Delete Default

Circular Gauge Meter Bar

Indicator Switch

Momentary Switch Line

Rectangle Circle

Polygon Dynamic Position

Indicator

space station could be used to develop a 3D situa-

tion display. The 3D situation display simulates

this capability. It contains 3D wire frame draw-

ings of the space station with MSC and vehicles in

proximity of the space station (e.g., orbiter and

0MV) in the correct orientation and position rela-

tive to each other. The display can be rotated,

translated, or zoomed, giving the crewperson an

excellent omniscient view of vehicles in proximity

of the space station.

Table III

SES Cupola Graphics Monitor Colors

Black Bright Red

Bright Green Bright Yellow

Dark Blue Magenta

Cyan White
Dark Red Dark Green

Dark Yellow Blue

Orange Purple

Gray Blinking Red

Table II

3 Dimensional Display Types

Header Entry End of List Terminator

Begin Coordinate Frame End Coordinate Frame

Rotation Translation

Scale Box

Cylinder Sphere

Line

Another concern related to display windows is

color. Programs prior to space station have im-

plemented monochrome display systems and have not
had to necessarily deal with the potential exces-

sive use of color in a display system. Astronaut

response to displays in the SES cupola has indi-

cated that a wide variety in color is distracting.
The number of available colors in the SES cupola

has been limited to sixteen, including white and

black. The complete list of available colors is

provided in Table III. An attempt has been made
to reduce the amount of color actually used in

display windows. For instance, switches in the

off position and indicators in the false state are

colored gray by convention. In general green is

used to indicate an active or true state, yellow

indicates caution, and red indicates a warning.

The other colors are used discriminatingly always

attempting to reduce the amount of color on the

display.

Most displays use only 2 dimensional display

types. However, the graphics capability of the

IRIS supports 3 dimensional (3D) graphics. While

the cupola is a structure with several windows, a

large percentage of the potential field of view is

obstructed. CCTV cameras help, but it is very

simple to lose your orientation. Radar and telem-

etry data from vehicles in the proximity of the

RFaEL-TINB SYSTEN DATABASE

The SES cupola applications software utilizes an

indexed shared memory concept that allows for

rapid modification of shared memory (Figure 4).

The allocated shared memory, called current value

memory (CVM) is divided into two sections: the

pointer section and the data section. The pointer
section is in the lower address portion of CVM.

As the name implies the pointer section contains

pointers to the higher address portion of CVM or

data section. The offset from the CVM base ad-

dress corresponds to the SYSID of the variable.

Therefore, the length of the pointer section is

defined by the largest SYSID. The data section of

shared memory contains data packets described
below.

An off-line database program is used to maintain

the SES cupola CVM. The Informix relational data-

base program is used to keep track of all SYSID

variables. Information such as the variable name

and description, where it resides in the uplink or

downlink buffer, as well as the variable type and

initial value are kept in the database.

Applications programs were written to access the
Informix database and extract information needed

to build three data files: the memory image file,

the uplink parameter file, and the downlink param-

eter file. The memory image file is a replica of

the SES cupola CVM during operations (Figure 5).

It contains all of the data packets that will re-

side in CVM. Each packet has the variable type

(ie. floating point, double precision floating

point, signed or unsigned 32-bit integer, 16-bit

integer, bit, or character string), the length in

words, the SYSID of the variable, and the current

value of the variable. The uplink and downlink

parameter files represent a mapping from CVM to

the buffer of data sent to (uplink) and from
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Database Memory Image File

(downlink) the simulation computers by the master

IRIS via the BSD interface. The parameter file is

ordered by buffer word first and if necessary by

bit location second. Each entry in the parameter

flle contains the SYSID of the variable, word lo-

cation in the buffer, and start bit.

Upon initialization of the real-time applications

software, the executive task reads the memory

image file, extracting the size of CVH, and dynam-

ically allocates enough shared memory for CVM. As

the data packets are read from the memory image

file and placed into the data section of CVM, the

pointer in the pointer section is resolved for the

appropriate SYSID. This process continues until

the memory image file is completely read.

There are some important advantages to thls con-

cept of accessing and maintaining data. First,

the database is maintained off-line, and is always

current to the real-time applications software be-

cause it is always read in each time the SES cupo-

la is initialized. Second, all SYSIDs within a

particular range do not have to used. In other

words, there can be "holes" in the database.

Third, holes in the database effect only the

pointer section of CVH; the data section is always

compressed with no wasted memory. Fourth, the da-

tabase is used to generate reports that document

the uplink and downlink buffer definitions; list

SYSID variables associated with particular subsys-

tems; llst SYSID variables not in use; list the

database sorted by variable type, name, SYSID,
subsystem, and other criteria.

SES CUPOLA REAL-TIHE SYSTRN SOFTWARE

The SES cupola real-time applications software for

the IRIS was developed in-house by NASA and sup-

port contractor personnel (Figure 6). Several

guidelines were adhered to in development of the

real-time system to facilitate maintenance.

First, the real-time system would be machine inde-

pendent. Only one version of the real-time system

would exist and be run on both the master and

slave IRIS units. Second, the real-time system

would be broken down into major functions. These

major functions would reside in separate tasks so

that if changes were made to a specific task and

the real-time system failed, then that task would

be suspect. Third, an executive task would be

used to initiate and schedule the real-time sys-

tem. Along with the executive (EXEC) task the

real-tlme system is made up of the input processor

and display update (IP/DU) task, the switch pro-

cessor and indicator processor (SW/IND) task, PDP

task, HSD task, and interface (INTF) task.

The EXEC task is the heart of the real-tlme sys-

tem. It is responsible for allocating and ini-

tializing CVH, the changed data block (CDB) which

will be detailed later, and executive shared memo-

ry which contains variables needed by other tasks

in the real-time system. EXEC is also responsible

for initiating the other five tasks in the real-

time system as well as establishing communications

between itself and the other tasks. Finally, EXEC

is responsible for scheduling the other tasks in

the real-time system. Considerable attention was

given to the problem of homogeneous data in CVH.

The order of scheduling shown in Figure 7 insures

that by the time display related processing is

begun in the SW/IND, CVH is updated.

Each of the five subordinate tasks contain a task

executive and the processes that actually perform

the function of the task. The task executive (not

to be confused with EXEC) is essentially generic

from subordinate task to subordinate task. Its

purpose is to initialize the task in terms of ac-

cess to CVH, executive shared memory, and CDB if

necessary. The task executive also allows its

processes to initialize if necessary. Finally,

the task executive completes establishment of com-

munications with EXEC. Once the task executive

has finished initialization, it enters an infinite

run loop and is put to sleep until EXEC signals It

to go.

The IP/DU task contains two separate processors:

the input processor (IP) and the display update
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SES Cupola Real time Applications Software

processor (DU). The IP/DU task executive uses in-

formation in executive shared memory to determine

which process to execute when it is signaled to go

by EXEC.

The IP, as the name implies, processes input in-

formation from the keyboard and three button

trackball. Upon initialization the IP reads the

display file for the banner window and places the

display information in dynamically allocated memo-

ry, called display list memory (DLM). The IP re-

solves overlapping display windows, as well as al-

location and deletion of display windows. When a

position in a display window is selected with the

left button of the trackball, the IP determines

the cursor position and compares it to display

item positions in the currently allocated DLM.

Once the proper display item is found, the IP exe-

cutes the appropriate function based on the type

of the display item. For example, if a switch was

selected, the appropriate switch SYSID is set

true, or if a page call was selected the appropri-

ate display file is read and placed in DLM. When

a display window is selected wlth the middle

trackball button, the IP is responsible for moving

that window. Finally, when a display window is

selected with the right trackball button, the IP

is responsible for popping that window to the

foreground. Currently, the IP processes keyboard

input only if the keyboard display type is select-

ed with the left trackball button.

The DU is responsible for update of all display

windows. The DU begins a trace of DLM at the ap-

propriate starting point for a particular display

window. As it encounters each display type, the

DU executes the graphics commands to draw that

display type. The DU must also perform some cal-

culations to correctly draw the display type. For

example, the gauge display type has a needle that

must be positioned correctly based on the limits

of the gauge and the current value of the gauge in

CVM. The DU must perform the appropriate calcula-

tions to correctly position the gauge needle. In

this manner the DU uses CVM to correctly display

gauges, meter bars, switches, indicators, and any

other display type that changes based on its asso-

ciated SYSID value in CVM.

The SW/IND task contains two separate processors:

the switch processor (SW) and the indicator pro-

cessor (IND). The SW/IND task executive uses In-

formation in executive shared memory to determine

which process to execute when it is signaled to go

by EXEC. SW/IND is the only task in the real-time

system that must be hard coded with SES cupola

specific functions.

The SW is responsible for resolving switch selec-

tion in the SES cupola. It is through the SW that

mechanical devices such as rotary switches are du-

plicated in software. For example, a bank of

switches on a display window may have the implied

function that no two switches may be selected at

any one time (a rotary switch). The SW resolves

which switch has been selected and deselects all

of the other switches in the bank.

The IND works closely with the SW to perform hard-

ware functions in software. Like the SW, the IND

must resolve some banks of indicators where only

one indicator in the bank may be active at one

time. However, the IND also deciphers the time

data from the simulation computers to correctly

display mission elapsed time and Greenwich Mean

time.

The PDP task is responsible for processing input

from the PDPs and updating the PDP displays. Upon
initialization the PDP task reads a data file de-

signed to establish the PDP configuration. As

with the display files, it is the PDP data file

that defines the PDP configuration for the SES cu-

pola; the real-time PDP software is generic and

simply responds to the data file. The PDP data
file defines which switches are momentary (active

only when depressed) and which change state on

each depression. The data file also defines the

PDP tree structure. For example, one PDP may be

used to reconfigure an entire bank of PDPs.

The HSD task is responsible for communications
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with the HSD interface. This task is active only

on the master IRIS and has two separate proces-

sors: the HSD read processor (HSDRD) and the HSD

write processor (HSDWR). The HSD task executive

uses information in executive shared memory to de-

termine which process to execute when it is sig-

naled to go by EXEC.

As stated previously the IRIS computers operate

asynchronously from each other and all other com-

puters. Therefore, information from the simula-

tion computers is used only when the master IRIS

asks for it. Timing data indicates that in gener-

al the master IRIS requests information more often

than the simulation computers are prepared to
offer it. The HSDRD retrieves a buffer of down-

linked information from the simulation computers
if available. If a buffer of data is received

then it is immediately broadcasted to all IRIS

units on the ethernet so that each unit may pro-

perly update CVM.

Upon initialization the HSDWR reads into dynami-

cally allocated memory the uplink parameter file

built from the Informix database explained earli-

er. The HSDWR uses the uplink parameter table to

map information from the master IRIS CVM into a

data buffer that the simulation computers will un-
derstand. This data buffer is then sent to the

simulation computers. It is important to note

that only the master IRIS CVH is used as the

source to build the uplink buffer. The INTF task

is responsible for making the CVH on each IRIS ma-

chine identical.

The INTF task works closely with the HSD task in

the area of communication. However, while the HSD

task is most concerned with the HSD interface, the

INTF task is involved solely vlth the ethernet in-

terface. The INTF task contains three separate

processors: the downlink read processor (DLRD),

the CDB write processor (CDBWR), and the CDB read

processor (CDBRD). The INTF task executive uses

information in executive shared memory to deter-

mine which process to execute when it is signaled

to go by EXEC.

Upon initialization the DLRD reads into dynamical-

ly allocated memory the dovnlink parameter file

built from the Informix database explained earli-
er. When the HSDRD routine broadcasts the buffer

of dovnlinked data from the simulation computers,
the DLRD retrieves that buffer of data. The DLRD

then uses the dovnlink parameter table to map the

data from the downlink buffer into CVM.

The CDB is the real-time systems method of porting

changes made to one IRIS' CVM to all other IRIS

units on the ethernet. For example, during SES

cupola operations, a crew person at one station

selects a switch. The crew person at the other

station expects his display to reflect that switch

selection. This is accomplished through the CDB.
The CDBWR transmits the CDB across the ethernet to

other IRIS units, and the CDBRD receives the CDB

from other IRIS units and updates CVM.

FUTURE SES CUPOLA CONSIDERATIONS

As stated earlier, one of the objectives of the

SES cupola is to provide to the engineering commu-

nity a tool for development of the space station

cupola. As the hardware design of the cupola

changes, the SgS cupola hardware will undergo in-

cremental changes. Also a dome visual system is

planned for the SES cupola in the future adding

another dimension of realism to man-in-the-loop

simulation.

By its very nature, software is more flexible than

hardware. As this paper has demonstrated, the SES

cupola real-time system was designed for flexibil-

ity and change. The offllne software tools (disp-

lay builder and relational database) are integral
parts of the real-time systems built in flexibili-

ty.

With these concepts in mind the future of the SES

cupola is bright. Currently OMV simulation in the

SES is undergoing validation. The SES cupola crew

station will be used as both a ground based con-
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trol station for OMV operations and a space based

control station. Likewise, the MSC is currently

being implemented in the SES. Many of the MSC op-

erations will be developed and analyzed from the

SES cupola. Beginning in April 1989, McDonnell

Douglas will utilize the SES cupola for displays

and controls development. A number of requests

concerning software modification have been made by

McDonnell Douglas, and those changes are currently

in work.

It is through its flexibility and ability to adapt

to the needs of the sponsor that the SES in gener-

al becomes an excellent engineering tool. The SES

has been directed to be the primary real-time man-

in-the-loop engineering simulation facility for

support of the Space Station Program. The SES cu-

pola is a precise and visible attempt to meet that

directive.
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Appendix A

SES Cupola Display Type Descriptions

The IRIS 4D supports the SES Cupola

through display windows on the multi-

purpose applications console (MPAC) as

well as keyboard and trackball (or mouse)

input. The display windows respond to the

SES via a data buffer through MI.

Variables downlinked from the SES to the

IRIS are displayed in various formats

depending on the display type used.

Likewise, inputs from the crewperson are

interpreted by the IRIS and uplinked to

the SES.

Everything shown on a display window is a

display type. All variable data as well

as static data is defined in terms of

display types. So a display type is

simply a functional unit on the display.

Variable data display types are used to

display data from the SES. These display

types tag a unique number termed a system

identification (sysid) to their variable

so that the real-time SES Cupola software

can keep track of variables passed to and

from the SES as well as internal

variables. The following is a description

of display types required for the SES

Cupola MPAC.

2_DD Header Entr x - The header entry is at

the beginning of every display file that

describes a MPAC display window. It

contains data that describes the window as

a popup window, banner window, or data

window. A banner window is a unique

window in the real-time system that covers

the entire display screen and cannot be

popped to the foreground, moved, or

deleted. A popup window usually contains

a number of page calls (described later)

to bring up data windows of related data.

Data windows present data to the

crewperson. The font used to display text

is determined by the font flag. The header

entry also contains the length of the

window data display file in bytes, the X

.and Y coordinates of the window origin,

and the X and Y length of the window in

pixels.

3__DDHeader _ - The 3D header entry is

at the beginning of every display file

that describes a MPAC 3D display window.

All 3D display windows are data windows.

The font used to display text is

determined by the font flag. The 3D header

entry contains the length of the window

data display file in bytes, the X and Y

coordinates of the window origin, and the

X and Y length of the window in pixels.

The distance of the eyepoint from the

origin, near clip plane, and far clip

plane distances are specified. Finally,

the perspective angle and z-buffer flag

are specified.

Coordinate Frame - The begin

coordinate frame display type is

associated with 3D display windows. This

display type causes all subsequent 3D

objects to be drawn relative to the

relocated local origin as specified by the

six data variables. Six sysids tag data

variables for X, Y, and Z position and X,

Y, and Z rotation. A display type name is

also specified.

End Coordimata Frame - The end coordinate

frame display type is associated with 3D

display windows. This display type

cancels the coordinate frame display type

and the local origin is returned to the

previous global origin. All coordinate

frames must be terminated by an end

coordinate frame. A display type name is

specified.

Rotation - The rotation display type is

associated with 3D display windows. This

display type allows the user to rotate the

eyepoint about the global origin. The X,

Y, and Z rotations are specified deltas.

A sysid tags the data variable that is

used to determine if the eyepoint is to be

rotated. A display type name is also

specified.

Translatlon - The translation display type

is associated with 3D display windows.

This display type allows the user to

translate the eyepoint along the X, Y, and

Z axis a specified distance. The X, Y,

and Z translations are specified deltas.

A sysid tags the data variable that is

used to determine if the eyepoint is to be

translated. A display type name is also

specified.

Scale - The scale display type is

associated with 3D display windows. This

display type allows the user to scale a

pre-defined amount about the origin along

any or all axes. The X, Y, and Z scale

factors are specified deltas. A sysid

tags the data variable that is used to

determine if the display is to be scaled.

A display type name is also specified.

Emd of List Tarmlmator - The end of list

terminator is at the end of every display
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file that describes a SES Cupola MPAC

display window. The sole purpose of the

end of list terminator is to flag the end

of the display list.

Integer - The integer display type is used

to display integer data on the display

window. A sysid tags the data variable.

The X and Y window coordinates of the

display type and field width are

specified. A yellow (warning) threshold

and red (critical) threshold are

available. The integer is also described

as increasing or decreasing so that the

thresholds reside at the upper or lower

end of the expected range. Normally the

data is displayed in white. If the value

crosses the warning threshold the data is

displayed in yellow. Likewise, if the

data crosses the critical threshold the

data is displayed in red. Thresholds are

optional and both thresholds do not have

to be used.

Real - The real display type is used to

display floating point data on the

display window. A sysid tags the data

variable. The X and Y window coordinates

of the display type, total field width,

and number of digits to the right of the

decimal point are specified. A yellow

(warning) threshold and red (critical)

threshold are available. The real number

is also described as increasing or

decreasing so that the thresholds reside

at the upper or lower end of the expected

range. Normally the data is displayed in

white. If the value crosses the warning

threshold the data is displayed in yellow.

Likewise, if the data crosses the critical

threshold the data is displayed in red.

Thresholds are optional and both

thresholds do not have to be used.

Float - The long float display type

is used to display double precision

floating point data on the display

window. A sysid tags the data variable.

The X and Y window coordinates of the

display type, total field width, and

number of digits to the right of the

decimal point are specified. A yellow

(warning) threshold and red (critical)

threshold are available. The double

precision number is also described as

increasing or decreasing so that the

thresholds reside at the upper or lower

end of the expected range. Normally the

data is displayed in white. If the value

crosses the warning threshold the data is

displayed in yellow. Likewise, if the

data crosses the critical threshold the

data is displayed in red. Thresholds are

optional and both thresholds do not have

to be used.

Hexldecimal - The hexidecimal display type

is used to display a 32-bit word in memory

on the display window in the form of a

hexidecimal number. A sysid tags the data

variable. The X and Y window coordinates

of the display type and color are

specified.

Messaae - The ascii message display

type is used to display ascii text that is

variable such as error messages on the

display window. A sysid tags the ascii

data. The X and Y coordinates of the

display type as well as color are

specified.

Statlo Text - The static text display type

is used to display ascii text that is

static such as labels on the display

window. The X and Y coordinates of the

display type as well as color are

specified. The character string is a

maximum of 8 characters in length.

Pa_e fall - The page call display type is

used to "call up" new display windows for

the MPAC. The display type bounds (left

X, right X, bottom Y, top Y), color, and

text are specified. A filename is

specified to indicate the display file to

be read.

Kevboard _ - The keyboard display type

allows user input from the keyboard.

The display type bounds (left X, right X,

bottom Y, top Y), color, and text are

specified. A filename is specified to

indicate the display file to be read.

Delete - The delete display type allows

the user to delete a display window in

real time. The display type bounds (left

X, right X, bottom Y, top Y) are

specified.

Default - The default display type allows

the user to save a screen configuration of

several display windows and recall that

particular configuration at some later

time. The display type bounds (left X,

right X, bottom Y, top ¥) as well as the

middle Y position and color are specified.

Text labels for the default and save

default portions of the display type are

specified. Finally, the name of the save

file is specified.

Dynamic Position Indicator - The dynamic

position indicator is a cursor on a bar.

The position of the cursor is determined

by the associated data variable and the

specified upper and lower limits of the

indicator. A sysid tags the data

variable. Another sysid tags a visibility

flag which is used to determine if this

display type is drawn. The cursor may

take the following forms: empty square

with "X", filled square, empty circle with

cross-hair, filled circle, empty triangle,

filled triangle, caret, or cross-hair.

The bar may be vertical or horizontal.

The display type bounds (left X, right X,

bottom Y, top Y), bar color, and cursor

color are specified. The upper and lower
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limits are specified.

Circular Gaug_e - The circular gauge

display type is used to display floating

point data in the form of a gauge on the

display window. A sysid tags the data

variable. The X and Y window coordinates

of the display type, total field width,

and number of digits to the right of the

decimal point are specified. The upper

and lower limits of the gauge are

specified. A yellow (warning) threshold

and red (critical) threshold are

available. The gauge is also described as

increasing or decreasing so that the

thresholds reside at the upper or lower

limits of the gauge. Normally the data is

displayed in white. If the value crosses

the warning threshold the data is

displayed in yellow. Likewise, if the

data crosses the critical threshold the

data is displayed in red. Thresholds are

optional and both thresholds do not have

to be used.

Meter Bar - The meter bar display type is

used to display floating point data in the

form of a meter bar on the display window.

A sysid tags the data variable. The

display type bounds (left X, right X,

bottom Y, top Y), total field width, and

number of digits to the right of the

decimal point are specified. The upper

and lower limits of the meter bar are

specified. A yellow (warning) threshold

and red (critical) threshold are

available. The meter bar is defined as

horizontal or vertical and with or without

threshold and limit labels. The meter bar

is also described as increasing or

decreasing so that the thresholds reside

at the upper or lower limits of the meter

bar. Normally the data is displayed in

white. If the value crosses the warning

threshold the data is displayed in yellow.

Likewise, if the data crosses the critical

threshold the data is displayed in red.

Thresholds are optional and both

thresholds do not have to be used.

Indicator and _ounded Indicator - The

indicator display type represents a

mechanical light indicator on the display

window. A sysid tags the data variable.

The display type bounds (left X, right X,

bottom Y, top Y) are specified. Also, the

"true" state text, text color, and

background as well as the "false" state

text, text color, and background are

specified. If the variable associated

with the indicator is 0 (False) the

"false" text, text color, and background

are displayed. Any other value is

considered true, and the "true" text, text

color, and background are displayed. The

rounded indicator display type has rounded

ends.

Switch - The switch display type

represents a mechanical 2-way toggle

switch on the display window and is drawn

to create the illusion of a 3-D push

button. An additional feature of the

switch display type is that an indicator

can be incorporated into the switch. A

sysid tags the switch data variable, and

another sysid tags the indicator data

variable. The display type bounds (left

X, right X, bottom Y, top Y) are

specified. Also, the "true" state text,

text color, and background as well as the

"false" state text, text color, and

background are specified. A transition

color is specified if the indicator option

is used. The truth table below indicates

the state of the switch based on the value

of the data variables. Note that if the

switch sysid (ss) and indicator sysid (is)

are identical the switch acts as a 2-way

toggle. If the two sysids are different

then the switch has a transition state.

switch s_xsid = indicator s__ysid

s s is position color

0 0 up false

1 1 down true

switch sMsid _> indicator s_ysid

s s is position color

0 0 up false

0 1 up true

1 0 down transition

1 1 down true

Momentary @witch - The momentary switch

display type represents a mechanical 2-way

toggle momentary switch on the display

window and is drawn to create the illusion

of a 3-D push button. An additional

feature of the display type is that an

indicator can be incorporated into the

momentary switch. A sysid tags the switch

data variable, and another sysid tags the

indicator data variable. The display type

bounds (left X, right X, bottom Y, top Y)

are specified. Also, the "true" state

text, text color, and background as well

as the "false" state text, text color, and

background are specified. A transition

color is specified if the indicator option

is used. The truth table below indicates

the state of the momentary based on the

value of the data variables. Note that if

the switch sysid (ss) and indicator sysid

(is) are identical the momentary acts as a

2-way toggle. If the two sysids are

different then the momentary has a
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switch s___sid = indicator s_ysid

s s is position color

0 0 up false

1 1 down true

switch sTsld <_ indicator s_ysid

s_ss is position color

0 0 up false

0 1 up true

1 0 down transition

1 1 down true

also.

Sphere - The sphere display type draws a

sphere on the 3D display window. The X,

Y, and Z coordinates of the center,

radius, and number of sides are specified.

A display type name and color are

specified also.

Line - The line display type draws a line

on the display window. The starting X and

Y coordinates, ending X and Y coordinates,

and color are specified.

Rectangle - The rectangle display type

draws a rectangle on the display window.

The display type bounds (left X, right X,

bottom Y, top Y) and color are specified.

The rectangle can be filled or empty.

Circle - The circle display type draws a

circle on the display window. The display

type X and Y coordinates, radius, and

color are specified. The circle can be

filled or empty.

Polyqon - The polygon display type draws a

polygon on the display window. The

polygon can have up to and including i0

vertices. The number of vertices, all (X,

Y) coordinate pairs, and color are

specified. The polygon can be filled or

empty.

3D Line - The 3D line display type draws a

line in three dimensional space and is

used on 3D display windows. Starting X,

Y, Z and ending X, Y, Z coordinates are

specified. A display type name and color

are specified also.

Box - The box display type draws a box on

the 3D display window. The center X, Y,

and Z coordinates; height and width on the

-X and +X ends of the box; and length are

specified. An offset along the Y or Z

axis may be specified to shift the front

face of the box. Rotations about the

three axes may be specified to orient the

box. A display type name and color are

specified also.

Cylinder - The cylinder display type draws

a cylinder on the 3D display window. The

X, Y, and Z coordinates; diameter at the -

X and +X ends of the cylinder; and length

are specified. The number of sides and

angle of rotation (full cylinder = 360,

half cylinder = 180, etc.) are specified.

Rotations about the three axes may be

specified to orient the cylinder. A

display type name and color are specified
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ABSTRACT

The purpose of the Orbital Maneuvering Vehicle
(OMV) Training Facility (OTF) is to provide

effective training for OMV pilots. A critical part
of the training environment is the Visual

System, which will simulate the video scenes

produced by the OMV Closed-Circuit Television

(CCTV) system. The simulation will include
camera models, dynamic target models, moving

appendages, and scene degradation due to the

compression/decompression of video signal.
Video system malfunctions will also be

provided to ensure that the pilot is ready to

meet all challenges the real-world might

provide. This paper describes one possible
visual system configuration for the training

facility that will meet existing requirements.

This paper reflects work performed for NASA
by CAE-Link Corporation.

INTRODUCTION

The OTF visual system must provide the CCTV

capabilities at a cost-effective price. The scene

content update rate is only 5 times per second
with a low-resolution requirement. This enables

the use of a high-end super-graphics
workstation as the medium for the CCTV

simulation. Combining the CCTV simulation
with the full-feature OTF simulation maximizes

pilot training. To further enhance training
capabilities, stand-alone and integrated modes

will challenge the pilot with limited and full-
mission scenarios.

The stand-alone mode provides the pilot with a
partial-task, one-on-one training environment

that guides the pilot's progress in a systematic
manner. Integrated mode allows the linking of

the OTF with several simulators at NASA,

Johnson Space Center (JSC). Integrated mode

will challenge the pilot to apply the lessons
learned from the stand-alone sessions with new

and more difficult mission objectives. Both

modes enable the pilot to handle any situation
that could possibly occur in an actual mission.

The functional design diagram for the OTF

Visual System (figure 1) shows the relationship

of the host computer with the Image Generation
system and also depicts the two configurations

available for the integration with respect to the
Visual System.

SIMULATION

HOST

VISUAL SUPPORT S_N

IMAGE/GRAPHIC

GENERATION

SYSTEM

VIDEO W/C, VERLAY _JL INSTRUCTOR/oPERATORsTAT1ONS

FIGURE 1 OTF Visual System Functional Design

Diagram

The OMV is a remotely-piloted spacecraft.

Currently defined mission scenarios include

rendezvous and docking with satellites, the

Orbiter, and the Space Station. To provide
training for these missions, a simulation

environment is being developed to train the
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pilot to interact with the OMV. Before detailing

the OTF Visual System, an explanation of the

real-world OMV is in order. Familiarity with
the actual system is essential to understand the

training requirements and how our functional
simulation of these systems will provide
effective training for OMV pilots. A basic

functional diagram of the OMV CCTV system is

presented in Figure 2. It provides the data flow

from the time an image is captured by the CCTV
camera, to when the image appears on the

pilot's display.

FIGURE 20MV CCTV Functional Diagram

OMV VIDEO SYSTEM

The OMV has two independent and redundant

camera systems: docking and pan/tilt/zoom.
Lighting equipment is associated with each

camera system. Four additional cameras can be
attached to OMV payloads, making a maximum

of eight cameras allowed. Camera images are

sent to the pilot at the Ground Control Console
(GCC) in the JSC Mission Control Center (MCC) via

the Tracking and Data Relay Satellite System

(TDRSS). The camera images are compressed
and placed into the OMV telemetry stream. The

bandwidth available for the video telemetry is

only 972 kbps, or 5 video frames per second.

The 972 kbps telemetry data rate can be
allocated to two cameras at 486 kbps each or

can be dedicated to a single camera. At MCC,
the GCC decompresses the telemetry and

performs error checking. The video image is

then combined with an overlay of flight-critical
data and displayed to the pilot.

Camera System

The pan/tilt/zoom camera is a redundant

system with a 6:1 zoom ratio and is typically
used by the pilot for initial acquisition of the

target vehicle and for the initial stages of OMV

docking. The docking camera is also a
redundant system and is mounted on the OMV

docking axis. This permits the pilot a boresight

view of the target docking mechanism
alignment with the OMV grapple mechanism.

Two redundant docking lights are included with
each camera system for a total of four lights.

Video Compression Unit

The Video Compression Unit (VCU) compresses

the video images. The VCU utilizes a frame-
grabbing technique to acquire 5 frames of RS-

170 video data per second in normal

operational modes. Compression and Huffman

and Reed-Solomon encoding are performed on
each frame of data. In the event that a single

docking light is the only available light source,

the pilot can select an extended imaging mode
that extends the usable camera range to 200
feet. The extended imaging mode increases the

VCU video sample rate and combines multiple
frames of data into a single enhanced image.

This is analogous to increasing the exposure

time of a photograph in a camera, allowing the
film to receive multiple images that combine for

a single photograph. The VCU also provides the

capability to send memory dumps from the
OMV Command and Data Management systems
to the GCC.

Video Reconstruction Unit

The Video Reconstruction Unit (VRU)

decompresses the digitized video images.

Huffman and Reed-Solomon decoding is also
performed. The VRU has an additional unit
attached called the Bit Error Rate Monitor

(BEM), which provides verification of pixel
count, line count, and correct subframe

sequence in the video frame. The BEM replaces

sections of corrupted data with data from the
previous frame. The pilot can increase the

number of reference pixels, which lowers the

resolution of the image being transferred and
reduces the amount of corrupted data. Not only

will the granularity of the picture increase but
also the validity of the image.
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Ground Control Console

All commanding of the OMV is done via the GCC.

The pilot has a redundant station with a

keyboard, two cathode-ray tubes (CRTs), and
rotational and translational hand controllers.

Preprogrammed commands are entered via the

operator's workstation. The GCC workstation
receives OMV telemetry and displays it to the

pilot. The pilot console receives the RS-170
output from the VRU and adds the overlays that

contain flight-critical data. This output is then

displayed on the CRTs. The video image has a
resolution of 510 by 244 pixels for a single

camera image or 255 by 244 for two cameras.

OTF VISUAL SYSTEM CONCEPT

The OTF Visual System must provide two

separate modes of operation: stand-alone and
integrated. In each of these modes, the camera

system of the OMV must be simulated. From
these CCTV models and from target control data,

the Image Generation System will generate the

representative scene to be displayed for the

OMV pilot.

Basic requirements for the Visual System
include simulation of the CCTV system,

transport of visual data to MCC, decoding of the
data, and addition of flight-critical parameters

to the display for the pilot. The OTF Visual

System will use a combination of hardware and
software on two different computer systems.

One computer will provide modeling
information while the other will transform that

information into a graphic representation. An

image generation computer will produce the
CCTV camera scenes for the pilot with a host

computer controlling the simulation models of
the vehicle camera systems. The host computer

also provides all commanding of the Image

Generation System. All database modeling will

be performed on the Image Generation System.

Training Configurations

Providing both stand-alone and integrated

simulation capabilities is required to supply
various levels of training. During initial pilot

training, the stand-alone mode allows
instructors to remain in close proximity to the

student pilot. Instruction on basic system

operation and scenarios is given. Partial
task/mission training is also possible. The OTF

Visual System will provide all nominal system

capabilities. In this mode, no effects caused by
telemetry degradation or

compression/decompression of the video signal
will be simulated.

The integrated mode connects the OTF with the
Shuttle Mission Simulator (SMS), Network

Simulation System (NSS), and MCC. This mode

provides full mission scenario training and
refines the pilot's proficiency and skills. The
OMV pilot is placed in situations as close as

possible to an actual flight, from prelaunch to
Orbiter retrieval. All interactions with MCC and

Shuttle personnel occur as they would in an

actual flight.

Both modes must provide image generation,

CCTV, and target control. The differences lie in
the distribution of the video image to the pilot,

the GCC, or the student pilot console.

Video Distribution

The OTF Visual System produces the raw video

image as directed by the host simulation. This
video is in RS-170 format to remain compatible

with the pilot console/student pilot console
hardware.

Integrated Mode: A VCU is used on the OMV

to convert and compress the video image into

digital telemetry. A non-flight-rated version of
the VCU is used in the integrated mode to

perform Reed-Solomon encoding and

compression of the Image Generation System
video. The VCU outputs this data to the Data

Acquisition System (DAS), which places the
video into the OMV downlink telemetry.

The real-world pilot console is used in

integrated training. The pilot's visual hardware
consists of a VRU, a frame grabber and graphics

generator, and two graphics CRTs. The VRU

accepts digital video from the telemetry
network and converts the digital compressed

signal to RS-170 format. The frame grabber on
the GCC acquires the image and adds the

overlay of flight-critical data. This composite
image is then displayed for the pilot.

By using the real-world VCU and VRU,

additional capabilities are available for training.
This includes command and data handling

memory dumps, BEM effects, and telemetry

degradation effects.

Stand-alone Mode: In the stand-alone mode

the output of the Image Generation System is
directly routed to the student pilot console; only
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the addition of switching capabilities and signal
amplifiers is necessary. No telemetry

degradation and no compression/decompression
effects are simulated in the stand-alone mode.

This approach reduces the complexity and cost
of the OTF simulator.

OMV Host Computer

The OMV host computer has several resident
math models. These models include simulation

of the OMV environment and onboard systems.

The OTF Visual System encompasses the
following areas:

° CCTV

° Visual Real-Time Support

• Visual Mode and Control

• Visual Special Effects

Closed-Circuit Television

The CCTV models dynamically simulate the

CCTV camera system on the OMV. All telemetry
data is passed from the camera systems to the

central unit. The central unit then places the
data into the telemetry stream that is sent to

MCC. The central unit also passes this

information to the redundancy management
unit for wellness checks and appropriate self-
reconfiguration in event of correctable

malfunctions. The CCTV camera system consists
of the pan/tilt/zoom camera, docking camera,

docking lights, and the VCU.

Pan/Tilt/Zoom Camera Model Functions

1) Thermal effects are modeled to provide
telemetry data to the central unit.

2) The electrical system is modeled to

provide status information to the central

unit. Electrical power consumption data is

provided to the OMV onboard systems
electrical system model. This model

provides all power-available data for the
CCTV model.

3) The camera gimbal control respond to
command data from the GCC. These

commands generate data that is sent to
the image generator. The mechanical and

electrical dynamics are simulated. The
net effect is the movement of the

simulated camera.

4) Gamma, focus, and iris control from the
GCC are simulated as near to the real-

world as is possible with the image

generation hardware.

Docking Camera Model Functions

1) Thermal effects are modeled to provide

telemetry data to the central unit.

2) The electrical system is modeled to

provide status information to the central
unit. Electrical power consumption data is

provided to the OMV onboard systems

electrical system model. This model
provides all power-available data for the
CCTV model.

3) Gamma, focus, and iris control from the
GCC are simulated as near to the real-

world as is possible with the image

generation hardware.

Docking Lights

1) The luminosity control commands for the

docking lights will be sent to the Image

Generation System.

2) Thermal effects are modeled to provide
heat transfer information to the camera
thermal models.

3) The electrical system is modeled to

provide status information to the central
unit. Electrical power consumption data is

provided to the OMV onboard systems
electrical system model. This model

provides all power-available data for the
CCTV model.

Telemetry outputs deemed necessary for

training but not previously defined will be

provided.

Processing of malfunctions will be provided at
the level of detail specified in the Level B

requirements.

The host computer (Concurrent 3280) contains
mathematical models for the OMV and its
environment. These models include the CCTV

system and the control of free-flying targets.

The host computer models propagate all state

vectors for the OMV and the free-flying targets.
When the CCTV system is in view of a free-

flying object, commands are given to the Image

Generation System to place the target at the
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given state vectors. All camera parameters
(field of view, focus, iris, gamma correction, and

lighting control) are sent with the state vector
data to the Image Generation System.

Camera focus is required for OMV training. For

the systems investigated, no focus or blur
commands were available in an off-the-shelf

product. A focus algorithm will be derived

using pixel pairing or filter algorithms.

Visual Real-Time Support Software

The Visual Real-Time Support software

provides commands for the image generator.
OMV target and Earth/Moon/Sun information

and data are processed. This process includes
the conversion of all Concurrent floating point

numbers to industry standard Institute of
Electrical and Electronics Engineers (IEEE)

floating point format.

a) Earth/Moon/Sun

1) State vector IEEE conversions must be

performed for the Image Generation

System

2) The luminosity of the Sun must be set

to provide correct representation of
the day/night terminator and shading

of objects.

b) OMV Visual Model and Target Control

1 ) State vector IEEE conversions must be

performed for the Image Generation

System

2) Appendages are commandable with

representative visual cues reflecting
the actions.

3) Navigation lights are represented as

polygons and do not add any shading
or luminosity effects.

Visual Mode and Control

The visual mode and control software provides

the functions necessary to maintain the
simulation modes (run, freeze, data store, and

return to data store). This software commands

the following subsystems:

a) Image Generation System The image

generation mode and control also includes
the model selection and image generation
initialization.

b) Video Distribution System The video
distribution mode and control configures
the distribution hardware with predefined

parameters for the mode selected. It also

allows system reconfiguration as needed
when the simulation is in freeze mode.

Freeze mode allows the simulator to halt

and suspend all integrations, as if time has

stopped inside the simulator.

c) Video Compression Unit - The VCU mode
and control software initializes and modes

the VCU hardware (only in integrated

simulation mode). A representative
model of the VCU is used in the stand-

alone mode.

Visual Special Effects

All special effects (such as focus and radio

frequency interference (RFI) noise) hardware
will be controlled by the visual special effects

software. Only the use of step attenuators to

degrade the OMV telemetry stream when sent
to the GCC in MCC is planned.

Image Generation

The image generation software is required to

produce a new scene 5 times per second. With
this low scene content update rate, it is possible

to use a high-end super-graphics workstation.
We estimate that 35,000 four sided polygons

per second are required for a 5 hertz update
rate. This estimate was produced by using

existing SMS and space model databases. The
scene content must include the Sun/Earth/Moon

and the possibility of four-free flying targets.

Image Generation Software

The image generation software provides the

following capabilities:

• Network connectivity

• Initialization mode processing

• Message processing

• Sequencing

• Screen-application processing

The workstation also provides all capabilities

for database model generation.
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CONCLUSIONS

The OTF provides an effective training
environment for the OMV pilots. Training

flexibility is achieved using the stand-alone and
integrated modes. In stand-alone mode the

pilot is introduced to the basic handling

capabilities of the OMV. The pilot can then
proceed to basic procedures and scenarios and

be challenged by instructor-inserted

malfunctions. In the integrated mode, the pilot
is integrated into the NASA team and learns to

work with all other MCC ground controllers and

Shuttle personnel. Enhanced capabilities are
added to the VCU and VRU within the command

and data handling simulation. The capability to
degrade the video image proportionally to the

amount of telemetry degradation is inherent in
the system and is supported by the visual cues

the pilot receives as a result of his commands.
These reactions in combination with the

capabilities described above provide a realistic
and effective training environment for the OTF.
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